
1 Background, Problem and objectives

In many scientific and practical situations the signs or characteristics presented by a case (a medical
problem, intelligence information, a traveler at a border or airport) are imperfectly related to the
condition of interest (a disease, a threat, a smuggler, etc). A prompt decision must be made as to
how to deal with the case at hand. In particular, we learn nothing about the true situation without
some additional and expensive processing (diagnostic surgery, a detailed review by an analyst, a
search an interview). When we incur the expense of collecting this information, we learn something
not only about a particular case, but also about how well a particular set of attributes correlates
with a positive outcome (the patient has a disease, the cargo represents a threat). The decision to
collect this information, then, must balance the cost (and, Probabilistically, the value) of having the
information now, and the value of the improving our ability to make better predictions in the future,
even if we are “wrong” about this particular case.

These problems are important. And there may be thousands of patients, hundreds of thousands
of containers and millions of documents. It is not possible to determine whether every particular
case is actionable. Yet, misdiagnosing a single case (overlooking cancer in a patient, bypassing a
container carrying a nuclear bomb, overlooking the critical document with instructions to terrorists)
can have devastating consequences.

Whatever the current state of our rule or algorithm, eachcase has some estimated immediate value,
and some potential to improve our future decisions. This is a key challenge for robust intelligence:
reasoning about uncertain situations, in the presence of costs for learning, and with evanescent
opportunities to learn. We will address this using dynamic programming problem. Specifically, the
“state of the system” is its state of knowledge relating the attributes of the event (a patient, cargo
coming through a port, a website) to the likelihood of a positive outcome (the patient has a disease,
the cargo is carrying dangerous cargo, the website has valuable information). Of course, the dynamic
program in its full form is computationally intractable.

We seek policies for learning rules. That is, we seek effective heuristics, or approximate algo-
rithms. We also will rigorously assess the distribution of the effectiveness of any specific heuristic. A
related problem is the ”multi-armed bandit” problem, a rare case that has been solved optimally in
a practical way, using the Gittins indices. The difficulty of computing Gittins indices has spawned
a number of heuristics. But this literature has largely ignored a critical feature of real problems.
Specifically, in real problems, examining a case with specific attributes will reveal something about
cases with nearby or related attributes. This fact is fundamental to the scientific method. When
we conclude that a high body-mass index is associated with certain health problems, we explicitly
acknowledge that what is true for a specific value of this variable should be approximately true for
nearby values. To put it in somewhat more mathematical terms, the property of interest is taken to
be a smoothly varying function of the observable information, features or labels.

The specific objectives of the proposed research are: (a) to define rigorous models of the
relation between features and the properties of interest (b) to solve these models, in the cases where
features are uncorrelated (c) to solve them when features are correlated (d) to define and assess
heuristics, with reference to these models (e) to extend the models to deal with changing relations
between features and the underlying “value” (f) to develop models of the range of value that will
be achieved, by applying these heuristics to the model problems (g) to assess and validate all of this
work using the TREC Adaptive Filtering collections and tasks. The products of this research will
be algorithms and heuristics, experiments run using them on the TREC materials, publications and
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conference reports in several relevant venues.

2 Previous related work

This work has three foundations. One is analytical, and draws on prior work in: approximate solution
of dynamic programming problems; analysis of change point detection, using Markov models; and
assessment of the performance of detection systems, using ROC analysis, and specific models of the
behavior of algorithms. The second foundation is a large body of labeled and evaluated material,
which will serve as testing ground for all the techniques to be developed. These are the TREC
materials, as developed and adapted for studying the Adaptive Filtering problem. The third, is
feature engineering, specific to the problems of dealing with text materials. We will draw on the
large array of feature engineering techniques that have been developed over seven years of TREC
effort on this specific problem.

2.1 Prior work on optimal information collection

The problem of optimally collecting information is an old one, but progress has generally been made
in narrow problem classes. Early work on optimal decisions in a statistical setting generally addressed
problems such as sequential hypothesis testing (see Bechhofer et al. (1968) and DeGroot (1970) for
reviews), ranking and selection (Goldsman & Nelson (1994)) and sequential design of experiments
(Bechhofer et al. (1995)). Cohn et al. (1996) provides a method for optimally collecting information
in a machine learning setting. The classic bandit problems for making choices while learning from
the experience of making each choice saw a resurgence in interest with the discovery of Gittins indices
(Gittins & Jones (1974), Gittins (1989)). There have been many attempts to generalize the basic
model, but the results remain quite limited.

The simulation community has addressed this problem in the context of choosing parameters to
control a simulation (see Fu (2002) and Swisher et al. (2003)). Each particular parameter setting
usually produces a noisy response, and the time required to measure the performance of a single pa-
rameter setting may be significant. The literature on optimal computing budget allocation (OCBA)
has focused on finding methods for collecting this information as quickly as possible (see Chen et al.
(2000), Thorsley & Teneketzis (2007) and He et al. (2007) for examples and references).

Most of the literature on the “exploration vs. exploitation” problem (as it is often referred to)
is relatively heuristic in nature (a review of these techniques is given in Powell (2007), Chapter 10).
Standard techniques involve mixing exploration vs. exploitation in a fixed, pre-specified ratio, a
declining ratio (epsilon-greedy optimization), and Boltzmann exploration (which explores decisions
with a weight that is proportional to the attractiveness of a decision). Other techniques can be viewed
as heuristic variations of Gittins indices, including interval exploration (Kaelbling (1993)) and upper
confidence bounding (Chang et al. (2007)). Bickel & Smith (2006) illustrate optimal learning in the
context of a binary choice model, motivated by an application of drilling oil wells.

Warren: POSSIBLE MISPLACED PARAGRAPH FOLLOWS

Gittins indices can be applied heuristically, and we can use procedures such as the knowledge
gradient which has nice theoretical properties but is not generally optimal. Information collection
problems can be formulated as dynamic programs, but these cannot be solved to optimality. Duff
& Barto (1997) proposes a method for discrete state, discrete action dynamic programs to learn
optimally, but this strategy has not been widely adopted. We will investigate the structure of
optimal policies using classical theory, and we propose to use approximate dynamic programming to
compute near-optimal policies, if only for the purpose of evaluating more convenient heuristics. ADP
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has proven successful in a range of resource allocation problems (Topaloglu & Powell (2006), Powell
et al. (2004), Powell (2007)), and we propose to use these methods for the problem of managing
sensor resources, which exhibits some of the same structural properties (such as concavity).

2.2 Prior Work on Change Point Detection

Learning with costs is more difficult when the relation between labels and the value of examining
the cases changes. Precisely this situation arises when there is an emerging threat such as changing
political environment, a new bacterial infection, etc. Specifically for the example of monitoring
message traffic for emerging threats, when an adversary is discussing a plan of attack, the traffic in
relevant documents will increase. Similarly, the number of money transfers to and from rogue states
may increase (as there are caps on the amounts that can be wired in one time, large amounts can be
transferred only in numerous smaller chunks). When a hacker gains access to a computer, he quickly
executes quickly several typical commands (for example, “change directory” and “list” commands as
he navigates to the password files.)

Thus, there will be on-periods and off-periods when the arrival rates of documents with interesting
labels are high and low, respectively. The start and end points of these periods are not labeled, and
it is crucial to be able to identify each on-period quickly and elevate threat-awareness during those
periods (for example, by adding temporarily more staff to critical tasks or by alerting officials or
even the public.) The problem is complicated by the fact that a feature or label which connotes
harmlessness for a period of time, may become significant quite suddenly.

Sequential change-point detection algorithms originate with for fault detection and isolation in
industrial processes, target detection and identification in national defense, and in radar and sonar
processing, speech and image analysis, and bio-surveillance; see, for example, ?, ?, and ? for an
extensive overview. Our own previous work on this topic is summarized below in section 3.3

2.3 Prior work On Adaptive Document Filtering

Adaptive document filtering has been studied in information retrieval. ? first asked when a searcher
with a well-defined task should give up perusing a list of documents, and built a complex Bayesian
model involving Gaussian distributions. (?) simplified the model using the conjugate Beta and
binomial distributions. Another old literature considers selective dissemination of information (SDI)
which grew to focus on the construction of complex Boolean queries to describe the interests of specific
clients. With the growth of the WWW, interest in Boolean queries declined, although systems such
as Verityrare used in government agencies, where complex “standing weighted Boolean queries”
help route information to the analysts best qualified to assess it. These systems evolved when all
agreed that the end-user was designing a system to meet his or her own specific needs, and was
capable of making an implicit decision about how much time should be spent refining the query.
It was also presumed that the flow of incoming material (the scientific literature, on the one hand;
message traffic of some kind, on the other) did in fact contain enough material of interest, that some
of it should be routed to the recipient, fairly often.

In the mid 1990’s using the TREC (Text Retrieval Conference), the Intelligence Community
posed the important and realistic problem of assessing these assumptions. The first instances of
filtering at TREC (TREC4,5) were essentially binary text classification exercises, which later came
to be called batch filtering. Adaptive filtering recognized that the true “filtering” problem must not
only assign a value to every relevant item routed to the end-user, but must also recognize that there
is a cost associated to every item that the end-user must examine Lewis (1997) . The system must
budget items sent to the end-user, which are both deliverables, and probes for information about the
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end-users specific needs. Thus this is precisely an instance of the problem we address. In TREC5,
three metrics were considered, corresponding to three different values of the ratio v/c, 1/2; 1; 3 where
c is the cost, v is the value of a relevant item, as defined below.

In TREC6 (Hull (1998)), more realistically, “Adaptive Filtering,” recognized that the system (or
the agency) must pay for the information that it uses to build a model. This was formulated as
a constant horizon task (H = 1000 documents) and the total score for any particular solution was
computed without discounting, as V (P ) =

∑min(S(R),1000)
i=1 [vi − c].

In this equation, R labels the decision rule, and S(R) is the stopping point of the rule. This
evaluation formula recognizes that often an optimal policy stops sending documents, having “decided”
either that there is not enough value in the stream, or that “it cannot figure out what the end-user
wants.” The corpus was drawn from FBIS (the Foreign Broadcast Information Service) with 130,000
training documents and 130,000 test documents. Thirty-eight of the topics have extensive (TREC-
style) evaluations; others have sparser evaluations based only on the top 100 documents found by
the NIST retrieval system. Cost and value were set so that the critical value of the probability
of relevance p, was 0.2 or 0.4. The task is so challenging that in the first year of the task, the
best system could barely justify its own existence (Hull (1998)). the problem was formulated as:
selecting the threshold to balance the immediate cost of presenting an irrelevant document against
the information gained by learning about its irrelevance.

Almost all participants filter using a ranked retrieval system, with thresholding of the document
score. some converted score to probability using logistic regression. There was more variation in the
features used to represent a document. AT & T used terms, phrases (adjacent pairs) and non-adjacent
pairs based on weights derived from the Rocchio expansion Singhal (1998). ANU uses terms and
phrases from training documents( ?), and weight terms based on contrasting the probability they
occur in the relevant documents and nonrelevant documents. City University ordered terms and
adjacent pairs of words, according to a Bayesian model, with iterations to improve the quality of
the fit (Walker et al. (1998)). CLARITECH used a Bayesian model in to select the terms, and a
Rocchio algorithm in a second pass. Their CLROUTE used a similar method, while CLCOMM used
two training sets, retaining only terms identified in both training sets (Zhai et al. (1999)).

In sum, these approaches, all based on linear classifiers or naive Bayes, were aggressive in extend-
ing the set of features beyond the traditional word-based vectors, to include: term pairs, k-grams, and
selective weighting of document parts. Some reduced the resulting space using a variant of Singular
Value Decomposition. All sought, via machine learning or statistical techniques, to improve both the
linear classifier and the threshold setting. In a sense, all of theses are more sophisticated extensions
of the basic stopping model, which simply asks for a determination that the line of investigation will
not pay off. None of this ingenious array of attacks on the problem explicitly considered either the
value of learning, or the specified finite horizon. The top six systems were (after correction of some
errors in official submission data) indistinguishable by a multiple comparison Neumann-Kulls test.

The specific values of the parameters (v, c) or the threshold probabilities, and the topic tasks
were adjusted in succeeding years, and scores became more often positive. The challenge, called the
Adaptive Filtering Task, was continued for several years, with slowly improving results (although
results at TREC are not, in general, comparable from year to year) until it was decided by the
program committee that the problem was not suitable for the TREC venue. Only a small amount
of the work ever took into account the dynamic and horizon-driven nature of the work. Specifically,
Zhang et al. (2003) Zhang & Callan (2001) considered a single step look-ahead. In the final year, the
best performance was achieved by a team from the Chinese Academy of Sciences (Xu et al. (2002)).
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A subsequent examination of the task, using homotopic techniques ?) for studying model parameters
? determined that the specific parameter settings selected for that entry were extremely close to the
optimal values of those parameters for that data set, raising the possibility that the selection of the
parameters had been inadvertently guided by exposure to the test data.

For this work, the TREC corpus is representative of the problems of interest, and offers a large
body of publicly available data.

3 Plan of Research

Our approach involves these activities: (1) effective approximate solution of the dynamic program-
ming problem (2) exploitation of the smoothness of the value function, to learn from correlation
among classes, features or labels (3) change point detection and (4) feature engineering and (5) vali-
dation on Adaptive Filtering, by an array of experiments with on features, heuristics, and parameter
settings.

There are four major problem classes. The base case covers stationary applications, with stable
relationships between the features and uncorrelated features. For documents such models are in-
adequate. No two documents have exactly the same features. We must consider interdependent or
“correlated” features or labels. The extension to change point arises, e.g. when there is an emerg-
ing threat. The complete problem therefore considers correlated labels with nonstationary value
function.

Below, we sketch how we would handle these three broad model classes. The first is a binary
decision problem. Cases arrive sequentially. Each case has a label xt, based on which we decide
between: select further evaluation — discard. The second model problem class presents several cases
at once (batched arrivals) and we choose a subset to evaluate. We use this to begin the study of
correlated features. Finally, we will add transient or change-point behavior, such as would arise in
the presence of emerging threats.

3.1 A Model with Unrelated Labels

We must, here, learn which among a discrete set of labels provides sufficient expected value to be
worth sending for further analysis. A label may be a vector of attributes x = (x1, x2, . . . , xm). Let
p(x) be the probability that a case with the label x will turn out, on inspection, to be a positive one.
If the value of finding a positive is v and the cost of the detailed examination is c then the condition
for being immediately worth sending is, E(x) = vp(x) − c > 0. We will deal with time by using a
discount factor γ, rather than the artifacts introduced by the use of a finite horizon. However, in
developing heuristics and algorithms, it is useful to consider a finite horizon TPH , which makes it
possible to formulate the dynamic programming problem.

3.1.1 Optimization model for a binary selection problem

Our most basic model posits a sequence of cases, each of which must either be discarded, or selected
for further evaluation at the time it is presented. Let t index the cases, and let Xt be the random
variable representing the label for the case with index t. We then make a decision Yt where Yt = 1
if we choose the case for further evaluation and 0 otherwise. Finally, we let Zt = 1 if we find that
the case is actionable, and 0 otherwise. As noted, we only observe Zt if Yt is 1. The overall process
is represented by the sequence of random variables (Xt, Yt, Zt)∞t=1. We further suppose examining a
document has a cost c and, if the document is interesting, there is a reward v = 1 (that is, the value
is taken as the numeraire). We suppose an infinite horizon with a discount factor γ. The infinite
horizon discounted reward is related to the random variables by the equation:
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∞∑
t=0

γtYt(Zt − c).

The behavior of a “solution” to this problem will depend on the “underlying reality” of the stream
of cases. We give a general probabilistic framework governing Xt and Zt. Let α be the underlying
rate at which interesting documents arrive. Specifically, we assume that the sequence (Zt)∞t=1 is a
sequence of independent Bernoulli random variables with success probability α. The labels that we
can see are governed by two (conditional) probability distributions on the space of labels: P0 and P1.
Together they generate an unconditional distribution: P01 := αP1+(1−α)P0 to be the unconditional
distribution of the Xt. We let P be the set of the three distributions (P0, P1, P01). Now we define a fil-
tration {Ft}∞t=0 by letting Ft, t ≥ 1, be the sigma-algebra generated by X1, Y1, Y1Z1, . . . , Xt, Yt, YtZt.
We will require that Yt+1 be measurable with respect to the sigma-algebra generated by Ft and Xt+1.
This sets a mathematical framework, except that we have not specified how any particular decision
rule, whether algorithm or heuristic, is to be represented. A policy π will be a rule for obtaining Yt+1

from Ft and Xt+1. Mathematically our problem becomes one of finding a policy π that achieves the
supremum

sup
π

IEπ
∞∑

t=0

γtYt(−c + Yt). (1)

If α, P0, and P1 were known perfectly, and hence P01 as well, we could choose Yt by computing
the odds ratio

Prob{Zt = 1 | Xt = x} = Prob{Zt = 1}Prob{Xt ∈ dx | Zt = 1}
/

Prob{Xt ∈ dx}
= αP1(dx)

/
P01(dx)

and then setting Yt = I{Prob{Zt=1|Xt}>c}. However, the distributions P0, and P1, and the value
of α, are generally unknown. So the rule for choosing the action Yt must reflect the need to learn
them from data. To develop a theoretical framework we formalize the precise way in which α,P0, and
P1 are unknown using a Bayesian approach. Let us suppose α, P0, and P1 are themselves random,
under some prior distribution, with α taking values in [0, 1] and the P0 and P1 taking values in some
measurable family of measures. This family of measures may be a parametric family such as the
family of normal distributions, or it may be an empirically parameterized family, admitting a much
broader class of priors, perhaps at the cost of increased complexity.

3.1.2 Dynamic programming formulation

In principle, we may solve the general problem using dynamic programming. We formulate the
solution abstractly, and then specialize to a specific case. Let S be the space of all possible joint
posterior distributions on the random variables α, P0, and P1. Let S0 be the prior distribution on
(α, P0, P1) under P. Our measurements give a sequence of posterior distributions (Sn)∞n=0 which
may be thought of as conditional distributions on (α, P0, P1) given (Fn)∞n=0. These conditional
distributions may be obtained recursively using Bayes rule. It can be shown that the supremum in (1)
remains unchanged if we restrict the policy space to stationary policies of the form π : S×X 7→ {0, 1},
where Yt+1 = π(Sn, Xn+1) under π. For each such stationary policy let us define the value function
for that policy V π : S 7→ IR as

V π(S0) = IE

[ ∞∑
t=0

γtπ(St, Xt+1)(−c + Zt+1)

]
.

V (s) = supπ V π(s). Then the value function satisfies Bellman’s recursion
V (St) = sup

π
IEt [γV (St+1) + π(St, Xt+1)(−c + Zt+1)]

= IEt [max{Q(St, Xt+1, 0), Q(St, Xt+1, 1)}] ,
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where we define the Q-factor Q : S×X × {0, 1} 7→ IR by

Q(St, Xt+1, y) = IEt [y(−c + Zt+1) + γV (St+1) | Xt+1, Yt+1 = y]

Given unlimited computational power, we could compute the value function V as the fixed point of the
Bellman recursion using an algorithm such as value iteration. In practice, the size of the state space
S prevents this, or at least makes it very difficult. If the value function can be computed, however, we
can use it to find an optimal policy π∗ according to the formula π∗(s, x) = I{Q(s,x,1)≥Q(s,x,0)}. Since
the sigma-algebra Ft ∨ σ(Xt+1, Zt+1) resulting from choosing Yt+1 = 1 contains the sigma-algebra
Ft ∨ σ(Xt+1) resulting from choosing Yt+1 = 0, Jensen’s inequality and the convexity of the value
function imply that

IEt [V (St+1) | Xt+1, Yt+1 = 1]− IEt [V (St+1) | Xt+1, Yt+1 = 0] ≥ 0. (2)

Thus, an optimal policy may always pass the document along to the analyst if Probt{Zt+1 = 1 |
Xt+1} ≥ c, that is, if the expected one-period reward is nonnegative (note that we have scaled the
costs by assuming that the reward is equal to 1). More significantly, an optimal policy will sometimes
choose to pass the document along even in situations in which the expected one-period reward is
negative because the immediate one-period cost is offset by the term (2). This term may be thought
of as a learning bonus, or as the value of the information gained from the analyst’s feedback. The
tradeoff between the learning bonus and a negative one-period reward is an example of the classic
tradeoff between exploration and exploitation. In the next section we present a specific example for
which the Bellman recursion may be solved numerically and the optimal tradeoff between exploration
and exploitation found.

The problem is easily illustrated for the case where the unconditional document distribution is
known. It is possible to show that the Q factors are given by

Q(St, Xt+1, 0) = γV (St)

Q(St, Xt+1 = x, 1) = −c +
(at,x+1) (1 + γV (at + ex, bt)) + (btx + 1)γV (at, bt + ex)

atx + btx + 2
.

This gives us Bellman’s recursion as

V (a, b) =
∑
x∈X

P01(x) max
{

γV (a, b),−c +
(ax + 1) (1 + γV (a + ex, b)) + (bx + 1)γV (a, b + ex)

ax + bx + 2

}
. (3)

The posterior on px becomes progressively sharper as the sum ax + bx increases. In the limit
as ax + bx → ∞, we have px = IEpx = (ax + 1)/(ax + bx + 2). If we know px exactly and we see
Xt = x we know that the value of choosing Y t = 1 is IE [Zt+1 | Xt+1 = x, px] = px, with no learning
bonus. We know then that the optimal decision is Yt = I{px>c}. In the limit as minx ax + bx → ∞,
we know every px exactly and the expected reward obtained at time t is IE [(−c + pXt)+ | p] =∑

x∈X P01(x)(−c+px)+. Then in the limit as minx ax+bx →∞, we set px = lim(ax+1)/(ax+bx+2)
and we have

lim
minx ax+bx→∞

V (a, b) =
∞∑

t=1

∑
x∈X

P01(x)(−c + px)+ =
1

1− γ

∑
x∈X

P01(x)(−c + px)+. (4)

3.1.3 A Value Iteration Algorithm

This value iteration algorithm approximates the value function, and serves to illustrate the principle,
but will be extremely slow for all but very small values of d. The algorithm requires that we choose
a parameter N which pays the role of ∞ [Warren - do I have this right? -paul], for which larger
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values will increase accuracy but slow the running time. We now approximate V (a, b) by (4) with
px = (a + 1)/(a + b + 2) for all a,b with minx ax + bx ≥ N . This approximation defines a new
optimization problem with value function Ṽ in which Ṽ (a, b) is defined according to (4) for a,b such
that minx ax + bx ≥ N , and obeys Bellman’s recursion (3) for other a,b. We have the inequality
Ṽ ≥ V , since the approximation (4) is an upper bound on V . As N increases to infinity, Ṽ decreases
to V .

We can compute a sequence of approximations v̄n decreasing to Ṽ . To do this we must store
the values of v̄n(a, b) with ax ranging from 0 to N and bx ranging from 0 to N − ax. We do not
actually need to store v̄n for those a, b with every x satisfying ax + bx = N , but doing so simplifies
implementation without harming correctness, and only marginally degrades performance. B Begin
with v̄0(a, b) given by (4) for every a and b, not just those a and b with minx ax + bx = N . Then
compute v̄n+1 from v̄n according to the recursion

v̄n+1(a, b) =
∑
x∈X

P01(x) max
{

γv̄(a, b),−c +
(ax + 1) (1 + γv̄n(a + ex, b)) + (bx + 1)γv̄n(a, b + ex)

ax + bx + 2

}
.

At each iteration n, we compute this recursion for every ax ranging from 1 to N and bx ranging
from 1 to N − ax, assuming that v̄n(a, b) is given by Ṽ (a, b) for (a, b) outside this range. We then
advance to the next iteration until we are satisfied that v̄ is “sufficiently close” to Ṽ . The error can
be characterized in a rigorous way in terms of the sup-norm.

[Warren – do we need to make the above claim?]

To store the function v̄n for one value of n, the number of values we need to store is

|{a, b ∈ IN : a + b ≤ N}|d =

∣∣∣∣∣
N∑

a=1

N − a

∣∣∣∣∣
d

= [N(N − 1)/2]d .

A naive implementation would store v̄n for two different values of n at a time, one for the
previous iteration and one for the iteration being computed. A more sophisticated implementation
could improve this by updating the v̄n in place, but would still need to store at least [N(N − 1)/2]d

values at each step. With N set to 12, this amounts to 66d values. Using 16-bit precision, and
limiting ourselves to working entirely in RAM on a single computer with 3GB available memory, this
will limit us to d ≤ log

(
3×109bytes

2bytes

)
/ log(66) ≈ 5.04.

This illustrates the principle. In practice, we can use approximate dynamic programming and
exploit the convexity of the value function (see Powell (2007), chapter 11).

3.1.4 Dynamic ranking and selection

If we are in an on-line learning situation where many cases arrive at once, and we assume that
the effect of the labels on the probability of “value” independent, we have, at each step the classic
multi-armed bandit problem to which Gittins indices are suited. Alternatively, we may formulate an
off-line learning problem, where we budget to learn as much as we can from a set of labels, after which
we apply our knowledge to solve a problem. If we again assume that measurements are uncorrelated,
we can use the recently-proposed knowledge-gradient algorithm (Frazier et al. (2007), see also Gupta
& Miescke (1994)) which uses a one-step lookahead to estimate the value of a measurement. The
approach of one-step lookahead has in fact been applied to the adaptive filtering problem in the
TREC setting by Zhang and Callan Zhang et al. (2003) In this heuristic, the choice of label d to
measure, indicated by xd = 1, is determined using
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XKG(Sn) = arg max
{x|

∑
d xd=1}

E
[
V (SM (Sn, x,Wn+1))− V (Sn)|Sn

]
.

where Sn is the current state of knowledge about the relationship between the label and its value,
xd = 1 if we are choosing label d, Wn+1 is the information gained from the next measurement, and
SM (Sn, x,Wn+1) is the updated state of knowledge (we propose to use Bayesian updating). V (Sn)
captures the value of the current state of knowledge. The incremental value of a measurement is
called the knowledge-gradient index, and it is given by first computing

ζn
d = −

∣∣∣∣ θ̄n
d −maxd′ 6=d θ̄n

d′

σ̃n
d

∣∣∣∣ .

where θ̄n
d is the current estimate of the value of label d after n observations, and σ̃n

d is the change
in the variance resulting from measuring label d (recursive formulas for θ̄n

d and σ̃n
d are easily derived

from Bayesian concepts).

ζn
d is called the normalized influence of decision d. It measures the number of standard deviations

from the current estimate of the value of decision d, given by θ̄n
d , and the best alternative other than

decision d. We then find

f(ζ) = ζΦ(ζ) + φ(ζ),

where Φ(ζ) and φ(ζ) are, respectively, the cumulative standard normal distribution and the standard
normal density. The knowledge gradient algorithm chooses the decision d with the largest value of
νKG,n

d given by

νKG,n
d = σ̃n

d f(ζn
d ).

The knowledge gradient algorithm is particularly easy to implement for independent measure-
ments. Frazier et al. (2007) shows that this method is asymptotically optimal, fullly optimal for
certain special cases and has an error bound. Experimental work shows that it compares very favor-
ably to a range of other heuristics, including the most sophisticated OCBA algorithms.

3.2 Ranking and selection with correlated measurements

We have recently found that, in contrast to Gittins indices, the knowledge gradient can be extended
to handle the case of correlated measurements. Let

f(Sn) =
M∑
i=1

ai(Φ(ci)− Φ(ci−1)) + bi(φ(ci)− φ(ci−1))

where ai, bi and ci are given [Warren - are they given or computed?] constants that are computed
for the ith label. Again, Sn is our “state of knowledge,” consisting of the vector of all the current
means µn, and the covariance matrix relating the different types of labels, Σn. Now let Σn(x) be
the updated covariance matrix that will result if make the measurement decision x (which indicates
the type of label we are going to measure). The knowledge gradient policy for correlated rewards is
then given by

XKG = arg max
x

f(µn,Σn(x)).

This is fairly easy to compute for problems with tens of thousands of labels, but would be diffi-
cult to apply to populations of hundreds of thousands or millions of documents. [WARREN: do we
mean features here?] For such applications, additional research is required on feature selection is
needed. For example, the methods of Latent Semantic Indexing sharply reduce the dimensionality
of the space of documents, which might then be binned into a reasonable number of orthants.
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3.3 Learning with Costs, in a Changing Environment

We will address this problem terms of Markov models, and we sketch the method here. Let {Ht, t ≥ 0}
represent some hidden Markov process with A state-space {0, 1} and a one-step transition probability
matrix P , where Ht = 1 (respectively, Ht = 0) means that at time t the relation between interesting
cases and labels holds, and at the other times it does not. For the case of intrusion., we would
say that a hacker is online at time t if Ht = 1 and offline if Ht = 0. Given the process Ht, t ≥ 0,
the labels Zt, t ≥ 0 are conditionally independent Bernoulli random variables with arrival rates
αHt , t ≥ 0, respectively. We also assume that the content Xt of document t has the conditional
probability density f0 (respectively, f1) given that Zt = 0 (respectively, Zt = 1.) At each time t we
make two decisions, Yt and Gt, where Yt = 1 if we choose the document for further evaluation and
0 otherwise, Gt = 1 if we believe that the source of interesting documents is active and 0 otherwise.
The immediate cost and reward of forwarding a document to an expert are c and 1, respectively.
Additionally, one incurs an immediate misclassification cost (cFN for a false negative, and cFP for a
false positive) if at time t the status of the source is classified incorrectly. Now the expected total
discounted reward becomes

IE
∞∑

t=0

γt
[
Yt(Zt − c)− cFN (Ht −Gt)+ − cFP (Gt −Ht)+

]
. (5)

As before, the objective is to find an admissible decision rule (Yt, Gt)t≥0 which maximizes the ex-
pected total discounted net reward. The solution of this partially observed Markov decision problem
(POMDP) depends on the posterior-probability-distribution process

Πt := Prob{Ht = 1 | X0, X1, . . . , Xt−1, Xt,

Y0, Y1, . . . , Yt−1, Z0Y0, Z1Y1, . . . , Zt−1Yt−1}, t ≥ 0,

which satisfies
Πt ∝ (1−Πt−1) [α0]

Yt−1Zt−1 [1− α0]Yt−1−Yt−1Zt−1P01f1(Xt)

+ Πt−1[α1]Yt−1Zt−1 [1− α1]
Yt−1−Yt−1Zt−1 P11f1(Xt), t ≥ 0

with the proportionality constant

(1−Πt−1) [α0]
Yt−1Zt−1 [1− α0]Yt−1−Yt−1Zt−1 [P00f0(Xt) + P01f1(Xt)]

+ Πt−1[α1]Yt−1Zt−1 [1− α1]
Yt−1−Yt−1Zt−1 [P10f0(Xt) + P11f1(Xt)] , t ≥ 0.

Note that the sufficient statistic for this problem, {Πt,F; t ≥ 0} is a controlled Markov chain on
[0, 1] adapted to the filtration

Ft = σ{X0, X1, . . . , Xt−1, Xt, Y0, Y1, . . . , Yt−1, Z0Y0, Z1Y1, . . . , Zt−1Yt−1}, t ≥ 0.

The expectation in (5) can be rewritten as
∞∑

t=0

γtIE
[
Yt

(
IE[Zt | Ft]− c

)
− cFN (1−Gt) Prob{Ht = 1 | Ft} − cFP Gt Prob{Ht = 0 | Ft}

]
=

∞∑
t=0

γtIE
[
Yt

(
(1−Πt)α0 + Πtα1 − c

)
− cFN (1−Gt)Πt − cFP Gt(1−Πt)

]
=

∞∑
t=0

γtIE
[
Yt

(
Πt

(
α0 − α1

)
− c + α0

)
− cFNΠt −

(
cFP − (cFN + cFP )Πt

)
Gt

]
,
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This, in turn, implies that the maximum expected total discounted net reward is attained by

Y ∗
t =

 1, Πt ≥
c− α0

α1 − α0

0, otherwise

 and G∗
t =

 1, Πt ≥
cFP

cFP + cFN

0, otherwise

 . (6)

Since we have said that when the hidden Markov process H is in state 1 (rather than 0), then
interesting documents are produced at a higher rate, it makes sense to assume α0 ≤ α1. Now note
that in (6) we have Y ∗

t ≡ 0 if α0 ≤ α1 ≤ c; that is, no documents are forwarded for examination if it
is too expensive. Similarly, Y ∗

t ≡ 1 if c ≤ α0 ≤ α1; that is, every document will be forwarded to an
expert if examination is very cheap. The more interesting and realistic case is when α0 < c < α1, in
which case the optimal strategy is given by (6).

To handle more realistic cases where arrival rates α0 and α1, transition probabilities (Pij)i,j∈{0,1},
and densities f0 and f1 are all unknown, we propose to treat all of these unknowns as random variables
with suitable prior probability distributions. Then we will derive the dynamics of the corresponding
posterior-probability-distribution process, rewrite the expected total discounted costs in terms of this
process, and use (approximate) dynamic programming techniques to solve it.

In the past we have successfully analyzed similar POMDPs. Dayanik et al. (2007a), Dayanik &
Goulding (n.d.), Dayanik et al. (2007b), ? studied stochastic systems which may undergo sudden
changes at unknown and unobserved times and determined Bayesian quickest change detection and
identification rules in discrete time. In continuous time, Bayraktar et al. (2006) have explicitly
characterized the solution of adaptive Poisson disorder problem, while Dayanik & Sezer (2006) have
proposed nearly-optimal online algorithms to detect a sudden unknown unobservable change in the
arrival rate and mark distribution of compound Poisson processes.

3.4 Random Walk Models: the Distribution of Costs and Benefits

We speak of the expected value, which is to be optimized in the selection of a rule or policy. Let
us now refine our terminology and refer to the “policies;; of hte preceeding sections as ”rules”. In
the larger picture, the methods used to determine the rules, from the data, will be called “policies”.
Since the cases from which we learn arrive in random orders, the actual performance of any policy,
and of the resulting rules will itself be a random variate. We will work to understand the range of
variability of this value, in deciding whether to rely on a policy in important applications.

One particularly important class of models produce rules, for each label, of the precise form:
“continue sending items with this label for evaluation until an irrevocable decision is reached to
either send all, or send no more”. The net present value of this rule can be computed precisely, for
any given value of the cost c and the probability p that cases with this label are, indeed, “positive
cases”. For such rules one may compute the probability that the rule will fire when exactly k items
with this label have been examined. With this information, one may compute not only the expected
value, but also the complete distribution of the expected value of this policy, as a function of the ,
the probability p, and the cost, discount and/or horizon parameters.

An example of such a tractable policy class is: D =“decide to stop when the number of positive
items seen, g, minus the number of negative items seen b falls below a preset threshold”. The
probability that a specific rule D, resulting from this policy, fires at step k can be computed using
random walks with an absorbing barrier. Other stopping rules, corresponding to different degrees
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Figure 1: As the value of g − b executes a random walk, it touches some minimum. The scatter
plot shows the step at which the minimum is achieved, and the value of the minimum, for 1,000
pseudo-random sequences of length 1,000.

of certainty about the prior estimate of the probability of good outcomes, may depend on a more
complicated procedure, such as the rules used in Sequential Analysis.

The probability that this rule results in a particular net present value can be expressed in closed
form. Specifically, by the reflection principal, we can compute the distribution of the probability that
the state will reach any particular value of b−g at precisely the kth step. This is the difference of two
binomial distributions, rescaled by a bias factor determined by the Radon-Nikodym derivative of the
actual distribution with respect to the symmetric distribution. For large numbers of steps the result
can be approximated by the normal distribution. For small number of steps, this approximation is
unreliable. A general sense of the behavior of a rule can be found by simulating the process.

An example in 1, shows, for a particular choice of the parameters, the step at which the random
walk reaches its minimum, and the value of that minimum. A simple stopping rule corresponds to
a horizontal line on this plot. The proportion of the points that falls below the line is a measure
of the chance that the corresponding rule leads to false rejection of the associated label. However,
the lower we set that line, the greater the chance that a label that is not “sufficiently valuable” will
also be accepted. Thus, this policy generates a parameterized family of rules (by the position of the
horizontal line) and yields an Operating Characteristic (analogous to the ROC concept in Sensor
Analysis) which summarizes the range of possible performance of the policy.

While the sign of the expected value will be the same for various discounting factors (for fixed
cutoff rule), the ability of the rule to correctly discriminate among the labels will depend on the
discounting. We show the value achieved using a cutoff rule of this type, for the case of a small
discounting of future gains 3.4a and a large one 3.4b. When little benefit is realized from long term
gains it is possible to get only a negative benefit, even when processing a label for which the long
term expected value is positive.
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Result of Opening packets: Frequency=0.3; Probability relevant=0.8; v=2; 
c=1; discount=0.9999
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Result of Opening packets: Frequency=0.3; Probability relevant=0.8; v=2; 
c=1; discount=0.5
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3.4a: The results of a simulation for specific
values of the parameters of the problem, for
the rule: terminate cases that go negative in
value. The discount factor is very close to
1, so that long term benefits are realized. It
would be very rare to terminate the service.

3.4b: With a sharper discount, it is possible
that the net present value will be negative,
although this is still a rare event. In either
case, this “label” ought to be identified as one
worth submitting.

[WE WANT PETER’s NEW GRAPH VALUE vs Horizon here

CAPTION. If the cost is equal to 0.5, and the prior distribution of the probability of relevance
is uniform, then with no time to learn (Horizon-0) the expect value us 0. If the cost is lower, it is
positive. But if the cost is higher, it would be negative. As the lower curve shows, it is only with
sufficient time to learn, that the rule can distinguish among the good and bad situations, and learn
whether to continue submitting for evaluation.)

THE BODY TEXT should say pretty much the same thing, but I am running out of words at
this point.

The probability of false negatives can be computed for any specific value of the rate at which cases
of interest are detected and sent for examination. These rigorous expressions can be convolved with
the believed joint distribution of the probability of value, and the amount of value, for each label.
Thus any specific calculatable rule can be joined with any assumed distribution of the probability of
valuable items ρ(p) to produce a precise estimate of the value achieved and missed, by applying the
rule.

3.5 Experimentation, Application and Validation

3.5.1 Feature engineering

The TREC Adaptive Filtering collection will serve to test the ideas proposed here, but requires
some processing and feature engineering to get beyond the established levels of performance. Proper
selection of features, and such technical details as the specific monotone transform applied to the
term frequencies, and corrections for document length are all important in optimizing performance.
Based on the experiences reported in TREC, we anticipate that a rich and complex set of features
will be needed. As discussed in section 2.3. These will include: terms; term pairs and phrases; term
co-occurrences; character n-grams (4- or 5-grams have proven particularly effective) and additional
weighting of lead terms or header terms.

At Rutgers we have considerable experience dealing with these texts, and have a suite of Perl
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scripts for preprocessing. We will use the Lucene package to manage retrieval and filtering aspects,
as it contains a number of the best-performing representation formulas. Finally, Rutgers is the
developer of the BXR package, a powerful Bayesian multi-variate regression package that has proven
particularly effective in reducing huge sets of features to manageable size, while achieving state-of-
the-art performance in a number of arenas.

3.5.2 Experimentation and Validation

We will compare approaches, as they are developed, on cases having both independent and correlated
features or labels. We will use simulation to test results, but, more significantly, we will validate
those findings by testing the most promising algorithms on the TREC materials. There are many
other applications, such as management of mobile sensors (e.g. sensing nuclear radiation), and
spatial problems, where correlations will naturally correlations arise due to the relationships based
on geographic proximity (e.g. measuring nuclear radiation or the flow of goods and people across a
continuous border). We will seek other opportunities (and other sources of support) to extend these
ideas to those cases.

4 Impacts

4.1 Impacts on science and technology

Advances in methods for collecting information arise in stochastic optimization algorithms (e.g.
Spall (2003)), optimization of simulation (e.g. Chang et al. (2007)), sensor management (Castanon
(1997)), sequential design of experience (Bechhofer et al. (1995)), and document processing. This
research should both accelerate the performance of methods for solving these problems, as well as
producing more robust solutions. This research has the potential of accelerating a broad class of
Monte Carlo-based optimization algorithms, with specific potential for improving the process of
identifying important documents.

4.2 Impacts on other scientific fields

This research will have scientific impacts far beyond the specific arena for which we have test collec-
tions that can support development and validation. Examples of such areas include: speedy medical
diagnosis or differentiation of diseases (especially in threat of chemical or biological warfare). When
central laboratories are a limiting resource, the quick decision of which samples to send for more
detailed analysis is a precise replicate of the problem studied here. The problem of identifying events
in noisy data occurs in fields ranging from seismology to meteorology, and the results obtained here
will be translatable to those settings.

4.3 Impacts on science and technology education

The proposed research will directly contribute to the education of two graduate assistants, one at
Rutgers, in the Department of Computer Science or Information Science, and one at Princeton in the
Department of Operations Research and Financial Engineering. The PIs will have the opportunity
to advance the education of several undergraduates, through the DIMACS Research Experience for
Undergraduates. The work will flow into graduate courses at both institutions. At Princeton, the
research will be incorporated directly into a new undergraduate course on Optimal Learning (ORF
418). Some of the resulting software will be suitable for educational use.

4.4 Impacts on society at large

The challenge of collecting information arises in a broad range of settings. This research may help
with biomedical research through the intelligent design of expensive experiments. This research may
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be put into practice at the National Ignition Facility at Lawrence Livermore, soon to become the
world’s largest laser facility (proposal pending), which faces a problem of determining when to use
sensors to detect the state of lenses. The research may help improve national security by accelerating
the process of identifying promising websites and documents.

There are many problems for which change-point detection, which is a component of this work,
is important, and must be coupled with the problem of learning classifications. One notable case is
spam-filtering, although the intense efforts in that area make it possible that general advances of the
type sought here will have to be heavily re-engineered to be effective. Other problems for which many
activities must be monitored and only a tiny fraction sent for expensive scrutiny are (a) computer
intrusion detection [some data is available for this, from the 1999 KDD Cup]. (b) cell-phone network
virus detection (c) credit card fraud and (d) calling-card fraud.

5 The research team

Paul Kantor is an Information Scientist, who has worked on the evaluation of information systems,
and related problems, with support from the NSF, DARPA and ONR. Warren Powell is XXXXX.
Savas Dayanik is an applied probabilist who is interested in the applications of sequential stochastic
optimization to homeland security, biosurveillance, and finance.

The project is formulated as a “small project,” but, because it involves three faculty investigators
rather than one, it is budgeted for two years, rather than three. The principal investigators are
currently working together on this problem class with modest support from the Department of
Homeland Security through the DyDAn Center for Dynamic Data Analysis, based at Rutgers. The
proposed work will complement and extend that work, and has no direct overlap with it.

6 Schedule of Work and Milestones

While we present the proposed research as a series of problems (uncorrelated labels; correlated labels;
and change point detection) in fact work on all three aspects will begin at once. The product of the
proposed work will be simulations, rigorous analytical results, demonstrations by application to data
streams, drawn from the TREC adaptive filtering track, and extensions to other situations as data
become available. Expected milestones for the four tracks of work are:

(1) approximate dynamic programming to develop rules for uncorrelated and correlated cases
(WP): uncorrelated case rules (6 months) correlated cases (12 m) integration with change point
(18m) validation and writing (24m). (2) Change point detection (SD) (6m) (12m) Integration
with ADP (18m) validation and writing (24m) (3) determination of the distribution of results using
random walks and Martingales (PK): Closed computable expressions for uncorrelated ADP rules
(6m) Closed computable expressions for correlated ADP rules (12m) Closed computable expressions
for change point rules (18m) validation and writing (24m) (4) validation with TREC data (PK)
Preprocessing and data set up; feature engineering (6m) Test and validate uncorrelated rules (12m)
Test and validate correlated rules (18m) Test and validate change point rules (24m)
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