The Information Quest: A Dynamic Model of User’s
Information Needs

Paul B. Kantor, Endre Boros, Benjamin Melamed, Vladimir Menkov
Rutgers University
4 Huntington St, New Brunswick, NJ 08903
kantor@scils.rutgers.edu http://aplab.rutgers.edu/ant/

Abstract

In networked information environments, using server-browser architectures, nearly all information finding
episodes become extended interactions between the user and the system. In this setting the system needs
some way to “understand” what the user is seeking, as this goal adapts and is modified during a session or
a series of sessions. We describe a formal model, in which the model of the user’s quest is represented as a
generalized abstract “response function” representing the user’s response to the information delivered by the
system. Representing this response as u(n) = Q(S(n — 1)) shows that the user’s utterance u(n) at a time
step n is determined according to the user’s “response function” @) by the materials S(n — 1) that had been
presented up through the previous time step n — 1.

The entire history of materials presented thus plays a role in determining the user’s response, providing a
very rich probe into the precise nature of the user’s information quest, here represented by the rule . We
show how this gives rise naturally to a new model for assimilating relevance feedback information, and to the
concept of itineraries in the information network. Finally the concept of an information quest (), provides a
natural framework for considering the time dependence of information about the user’s needs, and for various
models of information aging. The use and effectiveness of this concept are illustrated with data collected in
the Ant World Project at Rutgers.

1 INTRODUCTION

The Ant World Project at Rutgers (Ant World, 1999; Kantor et al., 1999), simulates the laying of information-
bearing traces in the World Wide Web. Since the links of the World Wide Web are incorporeal, these traces
are actually stored in a database maintained at the Ant World server site (aplab.rutgers.edu (Ant World,
1999)). The contents of that database include a quest identification number, representing the quest of the
user who left the mark, a pair of URLs indicating where the link comes from and where it goes to, and a user
judgment, which varies according to the particular judgment scheme being tested at the moment. Unlike
popularity-ranking systems such as Direct Hit (Direct Hit, 1999), which try to infer the user’s opinion based
on indirect feedback, such as the time he spends viewing a document, the Ant World asks the user to
explicitly provide his judgment of the usefulness of the document. In early implementations the judgment
is drawn on a 5 point scale from “extremely useful” to “worthless”.

The ID of the quest @ is linked in the database to the quest’s descriptions, provided by the user at the
beginning of the quest: the short description, or SD (Q), and an optional long description, or LD (Q). The

SD is a very short text, similar to a search engine query, for example “data fusion information retrieval”. The
LD is an extended natural language text, resembling a TREC query, e.g. “I am interested in learning more
about data fusion and information retrieval, and in particular on non-parametric methods for estimating the
most effective rule for combining several IR systems”.

These short and long quest descriptions provide an initial representation of what this particular individual
user wants on this particular occasion. If we think of them in terms of the quest response function, Q(S),
which represents the way in which the user with this particular quest responds to what the system S has
revealed so far, this is in fact the response to the empty set: Q(0). Even in this raw form, obviously it contains
more information than that on which most web search engines base their retrieval. In actual use the Ant
World system in fact does a preliminary retrieval from the base of stored quests, using this information as
a query. Before examining the details of that retrieval mechanism, we consider what happens as individual
pages are viewed and judged.

As a new page is seen and judged, its contents are noted in a database, which is in effect an inverted index to
all the pages that have been seen so far. In addition, the judgment is attached to that information together
with the user’s quest ID.

When the quest is created, the pairs (og,SD (Q)) and (or,,LD (Q)) stored in the database constitute the
quest profile. (The o and oy, are special symbols indicating that the texts marked by them are an SD and
an LD). As time progresses and the user visits more pages, the quest profile is elaborated by the addition
of pairs of the form (J,d). In each such pair J is a tuple representing the user’s judgment, and d is the full
text of the document that the user is seeing when he or she makes this judgment. In a sense, og and o,
play the role of special judgments.

The judgment J is a tuple because not only the “judgment label” (the label on the button in the console
window (Kantor et al., 1999) the user clicked when he judged the document), but also the configuration
which determines the rule in effect at the time that judgment was posted (such as what is the set of available
judgment buttons). In addition, for time sensitive information, the tuple must also contain the time 7 at
which the judgment was posted. Thus the judgment J is

J = (s,v,7) (1)

where s is the “judgment label” (which is an element the set of possible judgment labels allowed in the
configuration v), v is the system configuration (which determines the judgment options set) in effect when
that judgment was made, and 7 is the clock time at which the judgment was posted.

This information forms the basis for our investigations in quest description and quest matching. As noted,
each such judgment can be represented as the response of the user to the system’s presentation of the
document represented by D, given everything that the user has experienced and can remember during the
course of this quest, and from her entire outside life.

2 QUEST MATCHING

As judgments are applied to individual pages, we could, if we had a suitable differencing technology, infer that
the judgment applies to that which is new and different about the given page. One such trivial technology
is to subtract, from the vector representing the given page, a normalized vector representing the sum of
previously seen pages. However, to represent the user’s mental processes, each earlier page ought to be
weighted according to the attention that the user gave to it, a quantity which is unknown to us. Hence, at
present, we do not attempt differencing.

For matching of quests to each other, which is needed in order to recall judgments posted by users whose
quests most nearly match the present quest, we adopt a hybrid vector retrieval system. Note that the quest

Q is defined as a mapping from the space of system responses (pages delivered) to the space of judgments.
This mapping can be represented by its graph, as a set of ordered pairs. The set of ordered pairs is what
we store and manipulate in our database. The representation of the present quest denoted by @, plays the
role of a query in conventional information retrieval, and the collection of stored quests Q' represents the
corpus or document collection. In general then we are concerned with measuring the quest similarity score
Sim (@), Q") between the present quest and any particular stored quest Q'. Given any specific choice of the
similarity function Sim (-,-) the system compiles the relevant quest list: the list of stored quests sorted by
decreasing similarity score, down to some cutoff level.

For every document that has been judged by a user during any of the relevant quests, the system computes a
putative usefulness score, based on the judgments about this document made during the quests on the relevant
quest list. If the combined score exceeds a certain threshold (which is a variable parameter determined by
the present operating configuration of the Ant World system), the document’s URL is included into the
suggestion list for the present quest): the list of URLSs of potential interest to the user running quest Q).

During quest @), whenever the page currently viewed by the user contains a link to any of the documents on
the suggestion list, a small red ant appears on the user’s screen next to this link.

To reiterate, the system must make two decisions. The first is the determination of similarity between
the present quest and stored quests. The second is the setting of a threshold to determine whether ants
should appear on the screen. The same threshold is also used to determine whether pages appear in a list of
suggested pages, and the judgment of similarity is used to determine the order in which these pages appear.

As stated, the system uses a variant of the vector model. Each document d is represented by a vector over
a base consisting of all the unstemmed non-stop-word terms that have appeared in the collection C, which
consists of N documents: all documents viewed during all the recorded quests, plus the SD and LD of all
quests. For every document d in the collection and for any non-stop-word term ¢ occurring in it, we store
f(t,d): the (raw) term frequency, i.e. the number of occurrences of term ¢ in document d.

2.1 Document similarity

In our current computational model (as of May 1999), the similarity of quests is based upon the similarity
of the labeled documents associated with the quests, i.e. the quest’s SD and LD, and the set of documents
judged during the quest). The similarity of documents d; and d» is computed using Singhal’s formula
(Singhal, 1997):

Sim (di,dp) = Y ¢(t, di)$(t, d2)g(t), (2)
t

with summation over terms that occur in both d; and d» (i.e. f(t,d1) > 0 and f(¢,d2) > 0). Here ¢(¢,d) is
the normalized frequency of term ¢ in document d:

_(1+Inf(td)\ 1
o0 = ({5t) ®)
u(d) is the document length normalization factor:
p(d) = (0.8+0.2- %)_ ; (4)

nDU (d) is the number of the unique terms in document d

nDU (d) = [{t : f(t,d) > O}; (5)

(nDU (-)) is the average of nDU (d) over all documents d in the collection:

(DU (-)) = Y nDU((6)

deC

(f(-,d)), is the average term frequency for document d, i.e.

t:f(t t,d
<f<-,d>>=z‘fr‘ﬂ§§§;;(3 (7)

The term prevalence factor g(t) in equation (2) is defined so that it is high for rare terms and low for common

words: ,
=[5

where df (¢) is the document frequency of the term ¢ (the number of documents in the collection that include

t):
df (¢) = |{d: f(t,d) > 0}]. 9)

2.2 Quest similarity

In general, one can define the similarity measure of two quests J; and @), via the similarity of the underlying
documents in the following manner:

Sim (Q1,Q2) = Z Z J(d1,Q1), J(dz2,Q2)) Sim (dy, da). (10)

d1€Q1 d2€Q1

Here J(d, Q) is the judgment J — part of the (J,d) pair stored in the profile of the quest @ in the database
— that has been given by the user to the document d in the quest (). The coefficient matrix w can be

thought of as a function
w:JI xJ =R,

where J is the set of all possible judgment values, which are either triples of the form (1), or are special
values og and or,.

The coefficients w(Jy, J2) should be defined to indicate the importance of the documents involved for the
quests. A reasonable model would probably have w(cs,os) as a large positive number, and

11}(05,0'5) > w(Js,UL) = ’u}(O'L,Us) > ’w(UL,O'L) >0,

since the similarity of short descriptions is extremely important, and similarity of long descriptions is quite
important too. A smaller positive value could be associated with w(os,J5), or w(Jy, J}), where J, and J',
are some judgment values indicating a user’s approval of a page. If J; indicates approval and J_ 1ndlcates
disapproval, then it makes sense to define w(Jy,J_) as zero or a negative number. We disagree among
ourselves as to what value should be assigned to w(J_,J_). From one point of view, quests that are not
helped by the same page are indeed similar. But the reasons for judging a page negatively may be so diverse
that this would be misleading. It is therefore not clear whether this region of the weight matrix should be
zero or positive.

In practice, performing fast real-time computations with an arbitrary coefficient matrix w may produce
further bottlenecks. For this reason we have so far limited our experiments to a simpler model in which w
has a product form (rankw = 1):

Judgment label The converted grade value \(J)
“Meets my needs” 1.0

“Adds information” | 0.75

“Helps navigation” | 0.75

“Not useful” 0.0

“No comment” 0.0

Table 1: Grade conversion table for configuration VM06

w(J(dy, Q1), J(d2, Q2)) = A(J(d1, Q1)) A(J (d2, Q2))- (11)

Here A : J — R is the grade conversion function that maps users’ judgments (which may be symbolic or
numeric) to real numbers.

The currently used A(-) is defined as follows: For short and long descriptions, A(cg) = 6.0 and A(o) = 3.0.
For a “page evaluation” judgment J = (s,v,7), A(J) is in the range [0; 1], depending on the judgment label
s and configuration v, but not (yet) on the judgment time 7. The actual conversion table (from s to J) is
created for each configuration v when the configuration is created, along with the names of the judgment
buttons, as in Table 2.2.

Note that at present we are making no use of the conceptual distinction between a page that seems useful
in a navigational way, and one that is useful in terms of providing “information” per se. We have not yet
conducted the human factors experiments needed to tell us whether these should be teated differently. If
the are to be treated differently we will most likely have to give up the simple product form for w.

Factorization (11) allows to factorize the quest similarity formula (10) as

Sim (Q1,Q2) = Y U(t, Q1) ¥(t, Q2)g(t)- (12)

Here the quest profile vector ¥(-,Q), representing the entire quest @ as if it were a single unified document,
is a linear combination of the vectors ¢ for the underlying documents:

T(t,Q) =) AJ(d,Q))o(t,d). (13)
d

Our quest matching is dynamic. This means that we update the tables that store the quest profile data ()
and term prevalence factor (g) in real time. As the user makes more judgments during his quest @, the
relevant quest list and the suggestion list are continuously updated.

2.3 Problems with measuring quest similarity

A disadvantage of document and quest similarity formulas (2, 12), as compared to cosine models (Salton,
1971), is that there is no natural upper bound, such as 1.0, on the value of this similarity measure. (Since
all X’s are non-negative, the Sim (Q, Q') can only increase as new judgments are added to @ or Q') When
compiling the list of relevant quests @' for the present quest @), ordering the quests by the degree of relevance,
or scoring a link, we normalize all similarity contributions by Sim (@, Q) (“the similarity of the quest to
itself”). Thus the list of quests relevant to @ is

Rel (Q) = {Q": Sim(Q",Q) > ¢Sim (Q,Q)} (14)

Term ¢ 511(t) | Term ¢ $22(t) | Term ¢ s12(t)
tokugawa 21.6 | npa 28.0 | brewing 4.2
bakufu 16.6 | reactionary 25.8 | policy 3.3
modernisation 14.1 | fighters 24.6 | national 3.2
perry 12.9 | offensives 24.4 | were 3.2
meiji 12.6 | enemy 20.9 | monopoly 3.1
edo 11.1 | tactical 19.5 | had 3.1
edicts 11.1 | masses 16.5 | there 3.1
anu 9.9 | revolutionary 15.1 | revolution 2.9
0 9.8 | campaigns 13.4 | urban 2.6
1639 9.2 | cpp 12.6 | production 2.5
1630s 9.2 | semicolonial 12.5 | their 2.4
a 9.2 | monopoly 12.4 | occurred 2.3
sakoku 9.2 | party 12.0 | tactics 2.3
seclusion 9.2 | fronts 11.6 | been 2.3
japanese 8.1 | semifeudal 11.0 | was 2.3
japan 7.8 | rectification 11.0 | carry 2.3
christianity 7.6 | guerrilla 10.7 | he 2.3
17th 7.6 | democratic 10.6 | upon 2.2
shizuki 7.1 | ndfp 10.5 | economic 2.2
kaempfer 7.1 | carry 10.5 | that 2.2

Table 2: Top 20 contributions to Sim (dy,d;), Sim (dz2,ds), and Sim (dy,d2). The contribution of term ¢ to
Sim (d;, d;) in equation (2) is s;;(t) = ¢(t, d;)p(t,d;)g(¢)

(with the cutoff value ¢ = 0.2), and the score for a link to document d, in the context of quest @, is

Score(d) = Y A(J(d,Q")Sim (Q',Q)/Sim (Q,Q). (15)
Q'ERel (Q)

The suggestion list consists of all URLs d for which Score (d) > 0.1.

This normalization is still far from perfect solution, however. If Q' is a much larger quest than @ (i-e.
it includes a much greater number of judged documents), Sim (Q,Q’")/Sim (Q, Q) may be quite high —
theoretically, even greater than 1 — even if the similarity Sim (d,d’) of each particular pair (d € Q,d' € Q")
of underlying documents is low. A possible solution, which we have not tried but which is very much in line
with the traditional cosine model, is to normalize Sim (@, Q') by dividing it by (Sim (Q, @) Sim (Q’, Q'))1/ Z,

Choosing the values of the coefficients A’s in (11) is a tricky issue. How important should the SD and LD
be? In earlier experiments, when A(os) and A(or,) were much higher than the current values of 6 and 3 (on
the order of 10-20), the influence of the quests’ extended descriptions (judged pages) on the determination
of quest similarity was insignificant: basically, we just matched the short and long descriptions of one quest
to those of the other. With the current values, A(os) = 6.0 and A(or) = 3.0, extended descriptions are
important—but the chance of spurious quest similarity are quite high too. The latter phenomenon is due
to the fact that even when the topics of two documents d; and d» are quite different, their similarity value
Sim (dy,ds) can be quite high because of numerous not-very-common words that they share. With large
quests, this may add up quickly.

We illustrate some of the issues surrounding quest matching with the following example. (In this example,
all numbers include stopwords.) Document d; = http://coombs.anu.edu.au/SpecialProj/APM/TXT/-
low-m-02-96.html (document ID= —8117), with nDU (d;) = 1236 comes from a quest on Japanese history
(quest ID=7856); document dy = http://wuw.geocities.com/CapitolHill/2078/npa7.htm (document
ID= —958), with nDU (dy) = 568 comes from a quest on Philippine guerilla movements (quest ID=1312).

Stopwords retained | Stopwords excluded
Sim (dy,d1) 1730.6 1557.9
Sim (da, d2) 1821.7 1607.3
Sim (dl,dg) 231.7 122.70

Table 3: Using stopword exclusion to suppress spurious document similarity

The self-similarity of quests, using Singhal’s formula, Sim (d;, d;) = 1730.6, and Sim (d2,ds) = 1821.7, comes
to a large extent from words that are indeed specific to the topic. But Sim (di,d2) = 231.7 mainly comes
from words that can be found in any paper on a political or historic topic. The top 20 terms contributing
to each of the three similarity values are shown in Table 2.3. From the first two lists we get a rough idea
of what the documents d; and dy are about; but the third list (that of the top-contributing words the two
documents have in common) seem to convey little idea about either document.

We have alleviated the spurious similarity problem by omitting stopwords from all computations, using
the popular 429-word stopword list (Fox, 1992). Excluding stopwords helps because their contributions to
Sim (dy, d2) for unrelated documents d; and ds is relatively more significant than their contribution to either
document’s similarity to itself. For the above example, the effect of stopword exclusion is illustrated in Table
2.3. No doubt the situation would be improved much more if we represented texts in terms of two-word and
three-word “phrases” based on statistical analysis. This technique has been used (with the initial exclusion
of single terms) in the work of Schatz and Chen (Chen et al., 1996).

Another precision problem we observe in an Ant World search arises because the formula (15) is additive. A
document need not appear in a highly relevant quests to get a high score; it is enough to appear in a large
number of marginally relevant (just above the cutoff for the inclusion into the relevant quest lists) quests.

3 CHARACTERISTICS OF THE ANT WORLD QUEST DATABASE

The Ant World quest database is stored using a relational database management system (Sybase SQL Server
11). At present (May 21, 1999) the database contains informations on 1,000 non-trivial quests (quests with
at least 2 documents viewed), which have been run by the project staff and a few student testers over the
previous 11 months. During these quests 8,000 unique URLs have been viewed, and N = 1650 of them have
been judged. There are 23,000 itinerary and judgment entries (one entry per each document viewed and
per each judgment). There are 1.5 x 10°% entries in the Inst table, which contains the entire text of all N
judged documents split into words. (We don’t currently use this table, but it is maintained against the time
when we consider pairs and triples of consecutive words.) The table Freq, which contains the term frequency
data f(t,d) contains 462,000 entries, and the table Psi, which contains the quest profile vectors ¥ (¢, Q) has
305,000 entries. The judged documents contain 65,000 different words; for each word, there is an entry in
the Prev table, which stores the term prevalence values g(t).

4 PERFORMANCE OF THE SYSTEM

The algorithm we use to compute quest relevance and link scores according to the formulas (3, 4, 8, 12)
presented in Section does not scale well as the number of users and quests grows, since every time a user
makes a judgment about document d, a large number (nDU (d)) of entries need to be added to the table ¥
describing the current quest profile.

We are running the database server on a Sun Sparc Ultra-1 workstation (aplab.rutgers.edu), with a 167

25

Up'dating'Psi

20 L

15

count

10

0 H JHMHHHLWHH”HHHHHHH ﬂ([

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sec

Figure 1: Distribution of the cost of updating ¥ after a document has been added to the quest profile. All
170 data points are within the figure range.

MHz processor (according to psrinfo) that performs at about 15 Mflops at simple timing tests, and 246
megabytes of RAM (according to top). The web server runs on the same computer.

Depending on the quest and the current load of the computer, it takes 1-10 seconds (wall clock time) to
incrementally update the ¥ vector (equation (13) after a new document is added, as shown by the histogram
in Figure 1. To compile the relevant quest list as per equation (14) takes 1-5 seconds. It takes 0.1-2 sec to
compile the suggested documents list (the list of all d whose scores (15) are above the threshold 0.1; Figure
3).

ACKNOWLEDGMENTS

This work is supported by the Defense Advanced Research Projects Agency (DARPA) Contract Number
N66001-97-C-8537.

REFERENCES

Ant World (1999). The Ant World web site, http://aplab.rutgers.edu/ant/.

Chen, H., Schatz, B., et al. (1996). A parallel computing approach to creating engineering concept spaces
for semantic retrieval: The Illinois Digital Library Initiative Project. IEEE Trans Pattern Analysis and
Machine Intelligence, 18:7T71-782.

Direct Hit (1999). The Direct Hit web site, http://www.directhit.com.

Fox, C. (1992). Lexical analysis and stop lists. In Frakes, W. and Baeza-Yates, R., editors, Information
Retrieval: Data Structures and Algorithms, chapter 7. Prentice-Hall. The list of stopwords is available
at ftp://ftp.vt.edu/pub/reuse/IR.code/ir-code/stopper/stop.wrd.

60

T T T
Relevant quests list

50

40

11

20

10 ‘u\l\-’m
IS L LY RS R Y R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sec

count

Figure 2: Distribution of the cost of computing the relevant quest list. Out of 334 data points, 6 are outside
the figure range (in the range 15 to 70 sec).

100

T T
Suggestion List

90

80

70

60

count

50

40

30

20

10 -
0 H*—I—‘ I — | = — T

0 0.5 1 15 2 25 3 35 4 4.5 5
sec

Figure 3: Distribution of the cost of computing the suggestion list. Out of 311 data points, 7 are outside the
figure range (in the range 5 to 17 sec).

Kantor, P. B., Melamed, B., Boros, E., Meiikov, V., Neu, D. J., Kim, M.-H., and Shi, Q. (1999). Ant World.
In SIGIR’99 Proceedings. To appear.

Salton, G. (1971). The SMART retrieval system; experiments in automatic document processing. Prentice-
Hall, Englewood Cliffs, N.J.

Singhal, A. (1997). AT&T at TREC-6. In NIST Special Publication 500-240: The
Sizth Text REtrieval Conference (TREC 6), pages 215-226. NIST. Available at
http://trec.nist.gov/pubs/trec6/papers/att.ps.

