John Krogstie

Andersen Consulting and

The Norwegian University of Science and
Technology

Arne Sglvberg
The Norwegian University of Science and
Technology

Information Systems Engineering:

Conceptual Modeling in a quality perspective

January 2, 2000

Information Systems Engineering:
Conceptual Modeling in a quality perspective
by
John Krogstie, Andersen Consulting and NTNU
and Arne Sglvberg, NTNU

VI

Preface

This book presents an overview of the area of conceptual modeling, which
is an important area within information systems engineering. It is intended
for advanced teaching within information systems engineering, that should
be based upon an introductory course on the subject. Such an introductory
course can for instance be based on the book Information Systems Engi-
neering: An Introduction by Arne Sglvberg and David C. Kung (Springer
1993). The students should have had some experience in modeling for instance
through using data modeling such as ER-modeling and process modeling such
as DFD before embarking upon the course.

This book is based upon work originally presented in nine doctoral theses
delivered at the information systems group at IDI, NTNU under the super-
vision of Professor Arne Sglvberg. The theses are:

— HICONS: A general diagrammatic framework for hierarchical modeling [344]
by Guttorm Sindre.

— A prototyping approach to validation of conceptual models in information
systems engineering [236] by Odd Ivar Lindland.

— COMIS: A conceptual model for information systems [404] by Mingwei
Yang.

— Explanation generation in information systems engineering [151] by Jon
Atle Gulla.

— Executable conceptual models in information systems engineering [398] by
Geir Willumsen.

— A configuration management approach for supporting cooperative infor-
mation systems development [7] by Rudolf Andersen.

— Complexity reduction in information systems modeling [331] by Anne
Helga Seltveit.

— Conceptual modeling for computerized information systems support in or-
ganizations [207] by John Krogstie.

— Conceptual modeling and composition of flexible workflow models [53] by
Steinar Carlsen.

Material from the separate theses and accompanying publications is in this
book reorganized according to a framework for quality of conceptual models,
which have been developed primarily by Carlsen, Krogstie, Lindland, Sindre,
and Sglvberg in cooperation.

VIII

An outline of the book is presented in the end of the introduction chapter.
The book covers a lot of subjects, many of which are only touched upon
briefly. These are covered in more detail in the material referenced throughout
the book. A course being based on the book would typically also include a
set of up to date articles and other publications on specific areas of interest.

December 1999

John Krogstie
Arne Sglvberg

Table of Contents

Preface e VII
1. Imtroduction 1
1.1 Organizations are Outcomes of Social Construction 2

1.2 Conceptual Modeling as Social Construction 5

1.3 Quality Dimensions of Conceptual Modeling 7

1.4 Outline of the Book......... ... o i i, 8

2. Conceptual Modeling Languages 11
2.1 Modeling as Hierarchical Abstraction 11
2.1.1 What Is a Hierarchy?o i, 11

2.1.2 Four Standard Hierarchical Relations 17

2.1.3 Strengths and Weaknesses of Suggested Relations 20

2.2 Overview of Languages for Conceptual Modeling 23
2.2.1 An Overview of Modeling Perspectives 24

2.2.2 The Structural Perspective 25

2.2.3 The Functional Perspective 29

2.2.4 The Behavioral Perspective 32

2.2.5 The Rule Perspective 37

2.2.6 The Object Perspective cooiiii.n. 45

2.2.7 The Communication Perspective 50

2.2.8 The Actor and Role Perspective 57

2.3 Applying Several Modeling Perspectives 64

2.4 On the Expressiveness of CMLs 66
2.4.1 The Ontological Model of Information Systems....... 67

2.4.2 A Methodology Framework 68

2.4.3 The AMADEUS Metamodel 70

2.44 The GDR Metamodel 71

2.4.5 The ARIES Metamodel 73

2.4.6 A General Semantic Data model 74

2.4.7 A Brief Comparisonc..ooiiiiniiiaan. 74

2.5 PPP — A Multi-perspective Modeling Approach 75

2.5.1 ONER — Structural and Object modeling............ 76

X

Table of Contents

2.5.2 PPM - Functional, Behavioral, and Communicational

Modelingo 77

2.5.3 DRL - Deontic Rule Language 82
2.5.4 AML - Actor Modeling Language 84
2.5.5 UID - User Interface Description Language 87

2.6 Chapter SUMmMAryttt e e 88
Quality of Conceptual Models 91
3.1 Overview and Evaluation of Existing Frameworks........... 91
3.1.1 Pohl’s Framework 92
3.1.2 FRISCO ... 92
3.1.3 Overall Comparison 93

3.2 A Framework for Quality of Conceptual Models 94
3.3 Physical Quality.........coouiiii 101
3.4 Empirical quality 103
3.5 Syntactic Quality 105
3.6 Semantic Quality 106
3.7 Perceived Semantic Quality i, 108
3.8 Pragmatic Quality i 109
3.9 Social Qualityt e 110
3.10 Knowledge Quality i, 111
3.11 Quality of Conceptual Modeling Languages 111
3.11.1 Domain Appropriatenessc..c.oeeuueenn.n. 113
3.11.2 Participant Knowledge Appropriateness 115
3.11.3 Knowledge Externalizability Appropriateness 116
3.11.4 Comprehensibility Appropriateness 116
3.11.5 Technical Actor Interpretation Apropriateness 119

3.12 Quality of a Software Requirements Specifications (SRS) 120
3.12.1 Physical quality of an SRS 121
3.12.2 Empirical quality of an SRS 122
3.12.3 Syntactic quality of an SRS........, 122
3.12.4 Semantic quality of an SRS, 122
3.12.5 Pragmatic quality of an SRS 126
3.12.6 Social quality of an SRS........ 126
3.12.7 Orthogonal Aspects..........ccviiviiiiiinnien.. 127

3.13 Chapter Summaryuuin i, 128
Means for Achieving Syntactic Quality 131
4.1 Metalanguages for Syntax Specification.................... 132

4.2 Chapter Summaryouiii i 141

Table of Contents XI

Means for Achieving Semantic Quality 143
5.1 Consistency Checking it 144
5.1.1 Formal Verification of Data Models 145
5.1.2 Static Consistency Checking for PPM 150
5.2 Constructivity — The Fundamental Principle 152
5.2.1 Constructivity in BNM......, 153
5.2.2 Constructivity in PPM o oo 158
5.2.3 Approaches to Constructivity Checking 158
5.3 Driving QUestionsc.iiiiiiiiii i 170
5.3.1 ONER-Modelingc.oiiiiiiiiiiinnen.. 171
5.3.2 Processmodeling............. il 172
5.3.3 Rule Modeling i, 173
534 Actor Modeling oo i, 174
5.3.5 Additional Metrics for Completeness and Validity 175
5.4 Chapter SUMmMAaryttt iea e 175
Means for Achieving Pragmatic Quality 177
6.1 Overview of Activities.o, 177
6.1.1 Translations Facilities 182
6.1.2 General Translation Principles 184
6.2 Prototyping 185
6.2.1 A Taxonomy for Prototyping 186
6.2.2 Prototyping Languages............, 187
6.3 Execution of Conceptual Models.......................... 188
6.3.1 Execution Mechanisms 190
6.3.2 Requirements to Tools Supporting Executable Con-
ceptual Modeling Languages 191
6.4 Tracing of Model Execution.............. 191
6.4.1 Requirements to Tracing Components............... 193
6.4.2 General Tracing Principles......................... 194
6.5 Explanations Generation, 195
6.5.1 Construction of Models 195
6.5.2 Validation of Models 198
6.6 Support for Model Comprehension in PPP................. 202
6.6.1 Example 202
6.6.2 Overview of Techniques 203
6.6.3 Code Generation i, 204
6.6.4 Translating PPP Modelsto Ada.................... 206
6.6.5 Translating PPP Models to C and Prolog 212
6.6.6 Filteringin PPP il 216
6.6.7 Execution, Tracing, and Explanation Generation in PPP217
6.6.8 Advantages of the Integrated Approach 231

6.7 Chapter Summaryo i 232

XII

C.

Table of Contents
Means for Achieving Social Quality 233
7.1 Tool support for model integration........................ 233
7.2 Model Integration in PPP o ... 238
7.2.1 Intra-project Model Integration 238
7.2.2 Inter-project Model Integration 242
7.2.3 Inter-organizational Model Integration 247
7.2.4 Outline of an Approach to Model Integration 248
7.3 Chapter Summaryttt 249
A Methodology for Conceptual Modeling 251
8.1 Classification of Methodologies for Computerized Information
Systems Support 252
8.1.1 “Weltanschauung” o i, 252
8.1.2 Coverage il ProCeSS.vvvur et iaenaneenn. 253
8.1.3 Coveragein product 256
8.1.4 Reuse of product and process 257
8.1.5 Stakeholder participation 258
8.1.6 Representation of product and process 261
8.1.7 Maturityveii e 261
8.2 Conceptual Modeling in CIS Support in Organizations 262
8.2.1 Principles of Stakeholder Participation 262
8.2.2 Process Heuristics in Conceptual Modeling 265
8.2.3 Development Based on the Use of Conceptual Modeling269
8.3 Management of Change 286
8.3.1 Version and Configuration Management 287
8.3.2 Way of Working i, 295
8.4 Use of Viewspec in Modeling............. 298
8.4.1 [Inserting Modeling Statements 302
8.4.2 Inclusion of Changes...........c.. i, 305
8.5 Chapter Summaryoooiii i 308
Evaluating OMT Using the Quality Framework 311
A.1 Evaluation of StP/OMT........ .o 312
A.1.1 Language Qualityc.. i, 312
A.1.2 Potential for Creating Models of High Quality 314
Algorithms 317
B.1 Static Consistency Checking for PPM 317
B.2 Constructivity Checking in PPM 318
Mathematical Symbols 325

Table of Contents XIII

D. Terminology i 329
D1 TIME ..t e 329
D.2 Phenomena i 330
D.3 Stateand Rules i i 332
D.4 Data, Information, and Knowledge........................ 333
D.5 Language and Models o . i . 335
D.6 Actors and Activities 337
D.7 Systems 339
D.8 Social Constructionuiuieuiinn i, 341
D.9 Methodologyot 341
D.10 Abbreviationscu it e 344

Bibliography e 347

XIV Table of Contents

List of Figures

1.1 Social construction in an organization 4
1.2 The model quality framework of Lindland et al. (From [239])..... 8
2.1 Six graphs ..o e 14
2.2 Two graphs with hierarchical tendencies....................... 15
2.3 Two general digraphs 16
2.4 Two weighted digraphs...... 16
2.5 Hierarchical and non-hierarchical relations 17
2.6 Association with a single child 21
2.7 Example of a GSM model i 26
2.8 A conceptual graph linked to a semantic network (From [352]) ... 28
2.9 Symbols in the DFD language.......... o oo, 29
2.10 Symbols in the transformation schema language 30
2.11 Symbols in the real-world modeling language................... 32
2.12 Symbols in the state transition modeling language 32
2.13 Example of a state transition model 33
2.14 Decomposition mechanisms in Statecharts 33
2.15 Activation mechanisms in Statecharts 35
2.16 Dynamic expressiveness of Petri-nets.......................... 36
2.17 Symbols in the ERT languagescooo i, 39
2.18 Symbols in the PID language oo, 40
2.19 Relationship between the PID and ERL languages (from [212]) ... 41
2.20 Example of a goal hierarchy (From [356]) 43
2.21 Example of a goal-graph (From [63]) 44
2.22 General object model (From [396])............t 46
2.23 Symbols in the OMT object modeling language 49
2.24 Example of an OMT object model 50
2.25 Symbols in the OMT dynamic modeling language 51
2.26 Conversation for action (From [400]) 53
2.27 Main phases of action workflow, 54
2.28 Comparing communicative action in Habermas and Searle (From

[92]) i 55
2.29 The pattern of transaction 56
2.30 The symbols of the ABC-language (From [91]) 57

2.31 Example of an ALBERT model (From [99]) 59

XVI

2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
241
242
243
2.44
2.45
2.46
2.47
248
2.49

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

5.4
9.5
5.6
5.7
5.8
5.9
5.10

List of Figures

Example of an actor dependency model (From [407]) 61
Symbols in agents-role-position modeling language (From [406]) .. 62
Symbols in the OORASS role interaction language 63
A data modeling language used for meta-modeling 67
A metamodel of Wand and Weber’s ontology................... 68
A metamodel corresponding to the methodology framework 69
The unified model in AMADEUS 70
The metamodel of GDR. 71
Excerpts of the ARIES metamodel 72
A general semantic data model oL 73
A comparison of the unified metamodels....................... 75
Symbols in the ONER language 76
Symbols in the PPM language 7
The activities for ordering tickets in the IFIP conference......... 81
Example of a PLD model o o, 82
Rule-hierarchies i 83
Basis for actor models. 85
Symbols in the extensions to Statecharts used in UDD 88
Pohl’s framework (From [306]) 92
Extended framework for discussing quality of conceptual models.. 95
A simple ER-diagram 101
Example on poor aesthetics.......... L, 105
Example of syntactic invalidity i i, 106
Example of syntactic incompleteness 106
Example of semantic invalidity L. 107
Coverage of this section 113
Coverage of this chapter........... i i, 132
Portions of a meta-model for an executable DFD 135
Meta-model for execution of conceptual modeling languages. 136
Incorporating the use of rules and actors in the PPP meta-model . 139
Syntactical completeness checks of PPM model 141
Coverage of this chapter........ 144
A compact unifiability digraph o oo 148
The i/o condition for the process network for P; of the IFIP ticket

booking activities......... ... o i i 151
A Behavior Network, before and after abstraction 154
An STD for the network., 155
A decomposition of a process Pyoiiiiiiiiiii. 159
Two ways for consistency checking of the decomposition of P; 160
Two process networks which may produce run-time errors 161
Conducting possible execution sequences of a process 162

The execution life cycle and the operation groups of a process 165

5.11
5.12

5.13
5.14

5.15
5.16

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

6.21
6.22
6.23
6.24
6.25

6.26

7.1
7.2
7.3
74
7.5

List of Figures XVII

The IFIP ticket booking activities with canonical ports.......... 166
The STD of the process network for P, in the IFIP ticket booking

ACHIVIEIES .« ot e 167
The canonical port structure and the STD of the process network 168
The canonical port structure and the partially feasible STD of a

Process Network 169
Synthesis for the Properties of the Process Network 170
Construction of the port structures through the STD in Figure 13 171
Coverage of this chapter......, 178
Example of a language filter L. 179
Example of a model filter. 179
The example written in the GSM language 180
The architecture of a general translation facility 183
A general architecture of a tracing component.................. 194
An explanation showing what a process looks like............... 197
Tllegal constructions in PrM . In (a) an a posteriori rule is violated,

in(b)anapriorirule 198
Portions of a PrM model for the banking system 204
A decomposition of transaction processing 205
A PLD describing process P1.2 o i 206
Integrating techniques for the support of model comprehension ... 207
The overall translation strategy for generating Ada code (From [240]).207
Some selected translation rules the “PPP-Ada assistant” (From [240]) 208
An overview of the Ada translation process 209
An early version of process P1.2 and its corresponding PLD model 210
Test data for the execution session............ 213
Execution trace of the example............ 214
Parts of the temporal database after execution 215
(a) A model view resulting from a component abstraction (b)

Ports abstracted away and layout is improved 216
Architecture of the explanation generation system 217
Generated Ada code from a PLD indicating the insertion of probes220
A small portion of a trace graph for execution of the PLD of P1.2 221
Functions defined to request informations from the trace 227
Deep explanation for the question “Why was my withdrawal re-

Jected?” o 228
Operator sturcture of deep explanation for the question “Why do

you need New_amount 2”7 e 230
Coverage of this chapter........ 234
Viewpoint resolution 235
Strategy for viewpoint analysiso i, 236
Relationships in IBIS o i 237

Rules based on CATWOE analysis., 240

XVIIT List of Figures

7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

8.18
8.19
8.20
8.21
8.22
8.23
8.24

D.1

Goal-hierarchy extended from CATWOE analysis............... 242
IBIS-network on the issue of system platform 243
Pruned goal-hierarchy after argumentation process.............. 244
ONER-model for the IFIP-case............ccooiiiiiniine.n, 245
ONER-model for the traditional IFIP-case (From [404]) 246
Scale of influence and power i, 259
Co-generative learning in systems development 263
The SPEC-cycle for modeling oot 266
Overall actor model of ISDO95 271
Actor model of project-participants 274
PPM describing CFP-distribution at the actor-level 278
PPM describing CFP-distribution at the role-level 279
PPM describing reception and distribution of papers based on Ko 282
PPM describing distribution of papers based on Ky 283
PPM describing the paper handling 285
Conceptual modeling in a set of integrated projects 287
Version graph for system S i i 288
General hierarchy i 289
Component structure graph...........co i, 290
Check-out contract for Address register 1.3 296
Viewspecs are filter related to their originating models 299
a) A data model and associated viewspecs b) a process model and

associated VIEWSPECS . ..o vvt et e e 300
Viewspecs are variant related to their originating models 301
Viewspecs are context related to their originating models 301
Local workspaces i 302
Revisions of models 304
Resolving the conflict immediately after a viewspec is updated ... 305
Building a new revision based on updated viewspecs 306
The merge relations. i 308

Time and durationc.c.oeiiiiiit i 330

List of Tables

2.1

3.1
3.2
3.3

4.1

5.1
5.2
9.3

6.1

6.2
6.3
6.4

8.1

A data flow diagram taxonomy of real-world dynamics 31
Framework for model quality............. i, 100
A taxonomy of graph aesthetics (From [363])................... 104
A taxonomy of constraints for graph layout (From [363]) 105
Relationships in meta-model for general execution 137
The analysis of the path without loops 156
The analysis of the path with only the t3-loop 156
The analysis of the path with both loops 157
EML characterizations for some elements of the PPP conceptual

model e 224
Plan operators needed to generate the history deep explanation. .. 226
Additional operators for generating the input justification. 226
Instantiated cause operator., 227

Links between users and developers 260

XX List of Tables

1. Introduction

Conceptual models are normally constructed during the problem analysis
and requirements specification process of information systems engineering.
They are often used as a starting point for constructing and implementing
the information system.

A conceptual model can be defined as

a model of the phenomena in a domain at some level of approxima-
tion, which is expressed in a semi-formal or formal language.

In this text, we apply the following limitations:

— The languages for conceptual modeling are mostly diagrammatic with a
limited vocabulary. The main symbols of the languages represent concepts
such as states, processes, entities, and objects. We mostly use the terms
‘phenomena’ and ’phenomena classes’ instead of ’concepts’ in this text since
the word ’concept’ is used in many different meanings in natural language.

— Conceptual models are primarily used as an intermediate representation for
development and maintenance of information systems. We recognize that
conceptual modeling languages may be useful also for other purposes such
as organizational modeling or process modeling when there is no immediate
system implementation in mind. We will not treat such usage of modeling
languages in detail in the book.

— The conceptual languages presented in this text are meant to have general
applicability, that is, they are not made specifically for the modeling of a
limited area.

We combine the use of conceptual models with the philosophical outlook
that reality is socially constructed. Most of the current modeling approaches
are based on an objectivistic ontology,e.g., “the real world consists of entities
and relationships” [62, 203]. However, this assumption is not shared by ev-
erybody, in [348] for instance, it is focused on that what is modeled is some
persons perception of the “real world”.

The present practice of modeling includes a large element of subjectiv-
ity [232]. This subjectivity exists whether or not the data-focused approaches
uses ’entities’, ’objects’, or ‘phenomena’ as main concepts. If entities are taken
to have real-world existence, then the participants in the modeling effort must

2 1. Introduction

choose from the infinitely large number of entities that exist, only those enti-
ties that are relevant and suitable for inclusion in the model. Consequently,
the process of creating such a model is not value-free and the resulting concep-
tual model is not unbiased. If real-world existence of the relevant phenomena
is not assumed, then the entities are, by definition, created subjectively by
the participants in the modeling effort in order to understand the situation
at hand. In either case, the conceptual model serves only as an interpretation
of “reality”.

Thus, in both cases, it will be useful to admit to this subjectivity and
allow several models to co-exist, even if only one of them will be used
for building the information systems. There are indeed approaches that ac-
knowledge several realities. Some approaches are grounded in object orienta-
tion [165, 312]. Another approach is Multiview [16], which has a constructivis-
tic worldview and uses traditional conceptual languages as an important part
of the methodology. A similar attempt to integrate Soft system methodology
(SSM) [61] and software engineering approaches is reported in [97].

Even if traditional conceptual modeling languages may support a con-
structivistic worldview, they usually do not have explicit constructs for cap-
turing differing views directly in the model and making these available to
those who use the model. They neither have the possibility to differentiate
between the rules of necessity and deontic rules.

Conceptual modeling languages are biased towards a particular way of
perceiving the world:

— The languages have constructs that force both analysts and users to em-
phasize some aspects of the world and neglect others.

— The more the analysts and users work with one particular language, the
more their thinking will be influenced by this, and their awareness of those
aspects of the world that do not fit in may consequently be diminished recall
the Sapir-Whorf hypothesis which states that a person’s understanding of
the world is influenced by the language he uses [354].

— For the types of problems that fit well with the approach, neglecting fea-
tures that are not covered may even have a positive effect, because it be-
comes easier to concentrate on the relevant issues. However, it is hard to
know what issues are relevant. Different issues within a problem situation
may be relevant for different people at the same time.

1.1 Organizations are Outcomes of Social Construction

Organizations are constantly under the pressure of change from internal as
well as external forces. Most organizations are supported by a portfolio of
application systems that likewise have to be changed, often rapidly, for the
organization to be able to keep up and extend its activities. The portfolio usu-
ally consists of a set of individual, but highly integrated application systems
whose long-term evolution should be coordinated as a whole.

1.1 Organizations are Outcomes of Social Construction 3

Organizational change may be viewed from different philosophical points
of view. Two common sets of assumptions are the objectivistic belief sys-
tem and the constructivistic belief system [149]. They may be distinguished
through differences in ontology (what exists that can be known), epistemol-
ogy (what relationship is there between the knower and the known), and
methodology (what are the ways of achieving knowledge).

Organizations are made up of individuals who perceive the world dif-
ferently from each other. The constructivistic view is that an organization
develops through a process of social construction, based on its individuals’
perception of the world. In the objectivistic view [149] there exists only one
reality, which is measurable and essentially the same for all. The objectivistic
belief system can simplistically be said to have the following characteristics:

— The ontology is one of realism, asserting that there exist a single reality
which is independent of any observer’s interest in it and which operates
according to immutable natural laws. Truth is defined as that set of state-
ments whose natural or intended model are isomorphic to reality.

— The epistemology is one of dualistic objectivism, asserting that it is pos-
sible, indeed mandatory, for an observer to exteriorize the phenomenon
studied, remaining detached and distant from it and excluding any value
considerations from influencing it.

— The methodology is one of interventionism, stripping context of its contam-
inating influences so that the inquiry can converge on truth and explain the
things studied as they really are and really work, leading to the capability
to predict and to control.

The constructivistic belief system has the following characteristics accord-
ing to [149]:

— The ontology is one of relativism, asserting that there exist multiple socially
constructed realities ungoverned by any natural laws, causal or otherwise.
“Truth” is defined as the best-informed and most sophisticated construc-
tion on which there is agreement.

— The epistemology is subjectivistic, asserting that the inquirer and the
inquired-into are interlocked in such a way that the findings of an investi-
gation are the literal creation of the inquiry process.

— The methodology is hermeneutical and involves a continuing dialectic of
iteration, analysis, critique, reiteration, reanalysis, and so on, leading to
the emergence of a joint construction and understanding among all the
stakeholders.

Many features of the constructivistic paradigm have emerged from “hard
natural sciences such as physics and chemistry. The argument for the new
paradigm can be made even more persuasively when the phenomena being
studied involve human beings, as in the “soft social sciences. Much of the the-
oretical discussion in the social sciences is at present dedicated to analyzing
constructivism and its consequences [75]. The idea of reality construction has

4 1. Introduction

been a central topic for philosophical debate during the last two decades, and
has been approached differently by French, American, and German philoso-
phers.

Many different approaches to constructivistic thinking have appeared, al-
though probably the most influential one is that Berger and Luckmann [26].
Their insights will be used as our starting point. Their view of the social con-
struction of reality is based on Husser]’s phenomenology. Whereas Husserl
was primarily a philosopher, Schutz [326] took phenomenology into the so-
cial sciences. From there on it branched into two directions: Ethnomethodol-
ogy, primarily developed by Garfinkel [130], and the social constructivism of
Berger and Luckmann. Whereas ethnomethodology is focused on questioning
what individuals take as given in different cultures, Berger and Luckmann
developed their approach to investigate how these presumptions are con-
structed.

Organizations are realities constructed socially through the joint actions
of the social actors in the organization [136], as illustrated in Fig. 1.1.

Local Reality

(Individual

and group

knowledge)
Internalization Externalization
(Sensemaking) (Action)

Organizational reality
(Objects, institutions,
language,technology)

Fig. 1.1. Social construction in an organization

An organization consists of individuals who view the world in their own
specific way, because each of them has different experiences arising from work
and other activities. The local reality refers to the way an individual perceives
the world in which he or she acts. The local reality is the way the world is
for the individual; it is the everyday perceived reality of the individual social
actor. Some of this local reality may be made explicit and talked about. How-
ever, a lot of what we know is tacit. When the social actors of an organization

1.2 Conceptual Modeling as Social Construction 5

act, they externalize their local reality. The most important ways in which
social actors externalize their local reality are by speaking and constructing
languages, artifacts, and institutions. What they do, is to construct organiza-
tional reality by making something that other actors have to relate to as being
part of the organization. This organizational reality may consist of different
things, such as institutions, language, artifacts, and technology. Finally, in-
ternalization is the process of making sense out of the actions, institutions,
artifacts etc. in the organization, and making this organizational reality part
of the individual local reality. This linear presentation does not mean that
the processes of externalization and internalization occur in a strict sequence.
Externalization and internalization may be performed simultaneously. Also,
it does not mean that only organizational reality is internalized by individu-
als. Other externalizations also influence the construction of the local reality
of an individual.

Changing the computerized information system (CIS) support in an or-
ganization, for instance by introducing new application systems may also
be looked upon as a process of social construction. This view has re-
ceived increasing interest in the information systems community in recent
years [121, 235, 340, 400]. This outlook is adopted in this book, especially
when focusing on the creation and maintenance and further development of
conceptual models in connection with improving the computerized informa-
tion system support of an organization. This does not mean that we are
ignorant of the more technical aspects of computerized information systems
support. Constructed realities are often related to, and also often inseparable
from, tangible phenomena.

1.2 Conceptual Modeling as Social Construction

The construction of a conceptual model of “reality” as it is perceived by
someone is partly a process of externalization of parts of this person’s in-
ternal reality, and will in the first place act as organizational reality for the
audience of the model. This model can then be used in the sense-making pro-
cess by the other stakeholders, internalizing the views of the others if they
are found appropriate. This internalization is based on pre-understanding,
which includes assumptions implicit in the languages used for modeling. The
language in turn is learned through internalization.

After reaching a sufficiently stable shared model one might wish to ex-
ternalize this in a more material way, transferring it to the organization in
the form of computer technology. Here a new need for internalization of the
technology is needed for the CIS to be useful for the part of the organization
that is influenced by it. Also here, it should be possible to utilize the concep-
tual models to understand what the CIS does, and most importantly, why it
does it. Making sense of the technology is important to be able to change it,

6 1. Introduction

and the conceptual models already developed can act as a starting point for
additional maintenance efforts on the CIS when deemed necessary.

It should be noted that the abilities and opportunities for the different
social actors in the organization to externalize their local reality will differ
in several ways. Since the languages and types of languages used are often
predefined when a decision to create an application system is made, persons
with long experience in using these kinds of languages will have an advan-
tage in the modeling process. This applies especially to the specialists on
computer technology. This is not necessarily bad, for if they did not have
this knowledge it would not be interesting to include them in the develop-
ment, process in the first place. Rather, it is important to be aware of this
difference, to avoid the most apparent dangers of model monopoly as dis-
cussed by Braten [38]. What is also apparent is that some persons in the
organization have a greater possibility to externalize their reality than oth-
ers, both generally (the financiers of an endeavor will for instance usually be
in a position to bias a solution in their perceived favor) and specifically, by
the use of certain modeling techniques. Gjersvik has for instance investigated
how the way management perceive the world can be more easily externalized
in a CIS than the way shop-floor workers perceive the world [136].

The use of conceptual models constructed as part of the development
and maintenance of application systems has been discussed by several re-
searchers [44, 93, 186, 217, 393]. This discussions can be summarized as fol-
lows:

— Representation of systems and requirements: The conceptual model rep-
resents properties of the problem area and perceived requirements for the
information system. A conceptual model can give insight into the problems
motivating the development project, and can help the systems developers
and users understand the application system to be built. Moreover, by
analyzing the model instead of the business area itself, one might deduce
properties that are difficult if not impossible to perceive directly since the
model enables one to concentrate on just a few aspects at a time.

— Vehicle for communication: The conceptual model can serve as a means for
sense-making and communication among stakeholders. By hopefully bridg-
ing the realm of the end-users and the CIS, it facilitates a more reliable
and constructive exchange of opinions between users and the developers
of the CIS, and between different users. The models both help and re-
strict the communication by establishing a nomenclature and a definition
of phenomena in the modeling domain.

— Basis for design and implementation: The conceptual model can act as a
prescriptive model, to be approved by the stakeholders who specify the de-
sired properties of a CIS. The model can establish the content and bound-
ary of the area under concern more precisely. During design and imple-
mentation of the CIS, the relevant parts of the model guide the develop-
ment process. Similarly, the design and implementation might afterwards

1.3 Quality Dimensions of Conceptual Modeling 7

be tested against the model to make sure that the different representations
are consistent. When the model is formal and contains sufficient detail, it
is often possible to produce the application system more or less directly
from the model.

— Documentation and sensemaking: The conceptual model is an easily acces-
sible documentation of the CISs that are in use in the organization. Due to
its independence of the implementation, it is less detailed than other rep-
resentations, while still representing the basic functionality of the system.
Compared to manually produced textual documentation, the conceptual
model is easier to maintain since it is constructed as part of the process
of developing and maintaining the application system in the first place.
With the introduction of more flexible methodologies and tool support,
conceptual models are also likely to be used in reverse engineering and
re-engineering, and when reusing artifacts constructed in connection with
other application systems.

Summing up, a conceptual model is used both for communication and rep-
resentation, and faces demands from both social and technical actors. As a
consequence of this duality, requirements for conceptual modeling languages
and modeling techniques will pull in opposite directions.

1.3 Quality Dimensions of Conceptual Modeling

We have organized this book according to a framework that has been de-
veloped for understanding the quality of conceptual modeling and model-
ing languages. The main structure of this framework, as originally presented
in [239], is illustrated in Fig. 1.2. The basic idea is to evaluate the quality of
models along three dimensions by comparing sets of statements. These sets
are:

— M, the externalized model, that is, the set of all the statements explicitly
or implicitly made in the model.

— L, the language extension, that is, the set of all statements which can be
made according to the vocabulary and grammar of the modeling languages
used.

— D, the modeling domain, that is, the set of all statements that can be
stated about the problem at hand.

— 7, the audience interpretation, that is, the set of all statements which the
audience (i.e. various actors in the modeling process) think that the model
comprises.

Model quality is defined using the relationships between the model and
the three other sets:

— Syntactic quality is the degree of correspondence between model and lan-
guage extension, that is, the set of syntactic errors is M \ L.

8 1. Introduction

appropriateness
Domain Language
% syntactic
quality Model quality
appropriateness pragmatic appropriateness
quality
Audience
interpretation

Fig. 1.2. The model quality framework of Lindland et al. (From [239])

— Semantic quality is the degree of correspondence between model and do-
main. If M \ D # () the model contains invalid statements; if D\ M # 0
the model is incomplete. Since total validity and completeness are gener-
ally impossible, the notions of feasible validity and feasible completeness
are employed.

— Pragmatic quality is the degree of correspondence between model and au-
dience interpretation (i.e., the degree to which the model has been un-
derstood). If T # M, the comprehension of the model is not completely
correct. Usually, it is neither necessary nor possible that the whole au-
dience understand the entire conceptual model — instead, each group in
the audience should understand the part of the model which is relevant to
them. Feasible comprehension is defined along the same lines as feasibility
for validity and completeness.

In addition to these primary quality concerns, the correspondence between
domain and language, between domain and audience interpretation, and be-
tween language and audience interpretation may affect the model quality
indirectly. These relationships are all denoted appropriateness Fig. 1.2. We
also differentiate between the quality goals and means for achieving these
goals.

1.4 Outline of the Book

The quality framework is presented in more detail in Chap. 3. In Chap. 2 we
first give an overview of the different mechanisms and perspectives used in
conceptual modeling. Means to support quality on different levels are then
discussed in Chapters 4— 7. Aspects of a modeling methodology based on the
use of the framework is outlined in Chap. 8. An example on how to apply
the framework to evaluate a modeling approach is given in Appendix A.

1.4 Outline of the Book 9

Mathematical symbols are explained in Appendix C, and the terminology is
explained in Appendix D.

The main example used throughout the book concern an information
system for supporting the arrangement of a scientific conference. It is a variant
of the widely used “IFIP working conference” example which was originally
presented in 1982 [285] and has been used since then to illustrate a variety
of information system modeling approaches.

In this book, the example describes a real situation, since we have been
developing a system of this sort using some of the described languages. Thus,
the case description is not the traditional one, but is taken from an actual
project where we developed, used and maintained a support system for the
IFIP WGS8.1 Working Conference on Information Systems development for
Decentralized Organizations (ISD095), which took place in Trondheim, Nor-
way, in August 1995 [349].

IFIP is the acronym for International Federation for Information Process-
ing. An IFIP working conference is an international conference that provides
an opportunity for the computer scientists from IFIP member countries to
discuss and interchange research results and new ideas on selected research
fields.

The management of such a conference is usually done by two cooperating
committees. The program committee (PC) handles the contents of the confer-
ence, say, the reviewing of papers, comprising sessions and tutorials, etc. The
organizing committee (OC) handles the administration work, e.g. sending out
invitations, registration of attendants, arranging time and places for sessions,
dealing with financial matters, etc.

We will return to this and other examples throughout the book, adding
more detail to the case description as needed.

10 1. Introduction

2. Conceptual Modeling Languages

In this chapter, we will give an overview of mechanisms and perspectives
used in conceptual modeling. We will first look upon modeling in general as
hierarchical abstraction. Then we will present different modeling languages
according to the main phenomena they describe, and discuss the usefulness
of the possibility of applying several such perspectives at the same time in an
integrated manner. An approach supporting all the described perspectives,
PPP, is presented in the end of the chapter.

2.1 Modeling as Hierarchical Abstraction

A conceptual model is an abstraction. One mechanism for abstraction used
in many of the existing languages for conceptual modeling is the use of hier-
archies. The importance of hierarchical abstractions is based on the following
assumptions.

— Hierarchies are essential for human understanding of complex systems.

— Thinking in terms of hierarchical constructs such as aggregation and gen-
eralization appears to be very natural.

— Information systems are complex systems because they must reflect the
part of the world they process information about,

— A proper support for hierarchical constructs is an essential requirement
throughout the entire information system development and maintenance
process.

2.1.1 What Is a Hierarchy?

Here we will discuss what a hierarchy is in more detail. The first subsection
discusses the possibilities for arriving at a precise definition of the term hi-
erarchy’ in terms of graph theory. As will be seen, however, it is difficult to
come up with a definition which is precise and at the same time satisfactory.
The second subsection thus argues that being hierarchical is very much a
question of degree.

12 2. Conceptual Modeling Languages

Hierarchical: A Question of Definition. In [147, 341] a hierarchy is de-
fined rather vaguely as any collection of Chinese boxes (where each box can
contain several smaller boxes). [261] refrains from giving any exact defini-
tion of what a hierarchy is, but lists some properties which all hierarchies
should have, namely “vertical arrangement of subsystems which comprise
the overall system, priority of action or right of intervention of the higher
level subsystems, and dependence of the higher level subsystems upon the
actual performance of the lower levels. More precise definitions are given
in [17] and [49].

Some works also identify different kinds of hierarchical systems. [17] dis-
tinguishes formally between division hierarchies and control hierarchies. [261]
operates with three notions of hierarchical levels, namely strata (levels of de-
scription or abstraction), layers (levels of decision complexity), and echelons
(organizational levels). All in all it seems that the word “hierarchy” may be
used in rather different ways by different authors — as stated in [352] some
use it indiscriminately for any partial ordering, whereas the above definitions
require something more.

It is difficult to come up with a strict and precise definition distinguishing
hierarchical systems from other systems. However, since it is important to
make clear what we are talking about, we need some kind of definition of
what a hierarchy is.

To this end it is illuminating to look at the definition presented by Bunge
in [49]:

H is a hierarchy if and only if it is an ordered triple H =
<S,b,D> where S is a nonempty set, b a distinguished element
of S and D a binary relation in S such that

1. S has a single beginner, b. (That is, H has one and only one
supreme commander.)

2. b stands in some power of D to every other member of S. (That
is, no matter how low in the hierarchy an element of S may stand,
it is still under the command of the beginner.)

3. For any given element y of S except b, there is exactly one other
element x of S such that Dxy. (That is, every member has a
single direct boss.)

4. D is transitive and antisymmetric.

5. D represents (mirrors) domination or power. (That is, S is not
merely a partially ordered set with a first element: the behavior
of each element of S save its beginner is ultimately determined
by its superiors.)

As pointed out by Bunge, this definition does two things:

2.1 Modeling as Hierarchical Abstraction 13

— The first four points state what a hierarchy is in a graph-theoretic sense,
namely a strict tree-structure.!

— The fifth point introduces an extra requirement on the nature of the rela-
tions (i.e. edges) between the nodes, namely that they represent domination
or power.

Thus, Bunge makes the important point that whether something is a hier-
archy or not cannot be determined by graph-theoretic considerations alone.
However, Bunge’s definition might be a little too strict:

— the graph-theoretic demands are very limiting. In real life it often happens
that a node can have more than one boss, or even that there are cycles
in the graph, and still many people might consider the system to be of a
hierarchical nature.

— the requirement that nodes are related by domination severely limits the
scope of hierarchical systems — as stated by Bunge himself reciprocal
action, rather than unidirectional action, seems to be the rule in nature
(which leads Bunge to the conclusion that it is misleading to speak of
hierarchies in nature: “Hierarchical structures are found in society, e.g. in
armies and in old-fashioned universities; but there are no cases of hierarchy
in physics or in biology”). Since one might want to be able to model prac-
tically anything, we have to recognize other kinds of hierarchical relations
in addition to domination or power.

To achieve more generality, we will allow more general graphs to be considered
as hierarchical systems. But it will also be useful to have a specific term for
those systems which satisfy the rather restrictive requirements stated above.
Below we will use the following terminology:

— Strictly hierarchical graph: a digraph whose underlying graph is a tree, and
for which there is one specific vertex b from which all other vertices can
be reached (this is the distinguished element of Bunge’s definition).

— Weakly hierarchical graph: a connected acyclic digraph which deviates from
the former in that there is no distinguished element and/or in that its
underlying graph is cyclic. Mathematically, this class of graphs are called
DAGs (directed acyclic graphs).

— Cyclic hierarchical graph: a cyclic digraph.

Obviously, the latter two notions should be used carefully — there is no
point in calling any graph a hierarchy. Thus, even if we allow some DAGs,
and maybe even some cycles, we should still require that a graph is pretty
close to being a strict hierarchy if we call it hierarchical.

L To be precise, it is an open-ended directed graph whose underlying graph (i.e. the
undirected parallel of a directed graph) is a tree, since trees, graph-theoretically,
are undirected graphs. For an introduction to graph theory, including defini-
tions of graphs (directed and undirected), trees, and underlying graphs, see for
instance [399].

14 2. Conceptual Modeling Languages

The meaning of our suggested terminology can be visualized by Fig. 2.1.

Of these graphs (a) would not be a hierarchy because it is not connected
(but it might be two hierarchies), and (b) would not be a hierarchy because
the edges are not directed. (c) on the other hand, is the kind of graph which
satisfies Bunge’s requirements, i.e. it is a strict hierarchy. (d) would not be ac-
cepted as a hierarchy according to Bunge’s definition because the underlying
graph has a cycle (i.e. the middle element at the lowest level has two bosses),
but we might call it a weak hierarchy. Similarly, (e) does not have one distin-
guished element — there are two elements on top which do not control each
other. This could also be a weak hierarchy in our terminology. Finally, (f)
contains a cycle and is thus clearly excluded by Bunge’s definition, whereas
we could call it a cyclic hierarchy (because although containing a cycle, the
graph is not very far from being a strict hierarchy).

@ (b) (©) (d) (e) ®
Fig. 2.1. Six graphs

The motivation for removing some of the restrictions of Bunge’s definition
is that we want to be as general as possible, and clearly many people might
feel that systems are hierarchical even when they are not strictly hierarchical.
This is exemplified by the two graphs of Fig. 2.2, where (a) breaks the single
boss requirement, and (b) breaks the antisymmetry requirement. If the edges
denote the relation like “is the boss of "2, it is still likely that both systems will
be considered as hierarchical. Moreover, our definition has not required that
the relations denoted by the edges be transitive. Clearly, most hierarchical
relations are transitive (e.g. if A is the boss of B, and B the boss of C, it is
also true that A is the boss of C), but there is no point in rejecting cases
where this does not apply (e.g. if A is the parent of B, and B the parent of
C, it will not be true to say based on this that A is the parent of C, and still
people might feel that “parent of” is a typically hierarchical relation).

Having loosened up Bunge’s graph-theoretic restrictions it might seem
that we may end up calling any kind of directed graph a hierarchy. However,
this is not our intention. We still need some requirement corresponding to the
fifth point of Bunge’s definition. Dominance or power is too narrow. Still we
need to make some restriction on the semantics of the relation denoted by the

% In (b) Bo and Dan might for instance supervise two different business areas, both
working on both.

2.1 Modeling as Hierarchical Abstraction 15

A\

VNN

Kim Al Stu Liz Rob Hal Kim Al Stu Liz Rob Hal

(a) (b)

Fig. 2.2. Two graphs with hierarchical tendencies

edges. This is not easy, and can only be dealt with when we have discussed
in the next subsection what it means to be more or less hierarchical.

Hierarchical: a Question of Degree. If one takes everything into consid-
eration, a model of a situation will be a general graph rather than a hierarchy.
Depicting something as a strict hierarchy will therefore be a simplification,
and this simplification may be more or less appropriate, depending on the
distance between the hierarchy depicted and the actual situation as it is per-
ceived.

How can such distance be measured? Given a general connected digraph,
how would you answer the question “How close is this graph to being a hier-
archy?” From a general connected digraph, a strict hierarchy can be obtained
by cutting some edges, so a first attempt could be to count how many edges
one would have to cut, or rather the ratio of cut edges to the total number
of edges. With this approach we would say that the digraph of Fig. 2.3(a)
is obviously closer to being hierarchical than the one of (b), since in (a) we
have to cut only 2 out of 10 edges, whereas in (b) we have to cut 4 out of
10. However, the soundness of this kind of computation relies on the assump-
tion that all links are equally important, which need of course not be true.
To deal with other cases, each edge must be assigned a weight, signaling its
importance. In Fig. 2.4 weights have been assigned, and now it is (b) which
is closest to being a hierarchy, because the minimum cut has a total of only
5 weights, whereas the same number for (a) is 12.

If the given relation is “is the boss of” weights should reflect the degree
of influence that the supervisor has over the subordinate; if the graphs are
call graphs for a software system, importance will depend on the frequency
of calls. Generally, importance is a very problematic notion, and we will not
enter any further discussions of it here. Instead we will only conclude that:

— A general directed graph can be more or less hierarchical
— Its closeness to a strict hierarchy is dependent on:

16 2. Conceptual Modeling Languages

ANS
AR

Kim Al Stu Liz Rob Hal m Al

@) (b)
Fig. 2.3. Two general digraphs

Su Su
9 9

NWLSRIR/AN

Kim Al Stu Liz RO m Al 1Z

(a) ()

Fig. 2.4. Two weighted digraphs

— The structure of the graph.
— The importance of individual connections.

Being hierarchical is thus a question of degree. Not only specific graph models
of the real world can be evaluated according to this; we can also compare
different kinds of relations. Obviously, some relations, like “is the boss of”,
tend to result in rather hierarchical graphs, whereas for instance “loves” is
not likely to do so.

In Fig. 2.5, (a) is a plausible picture of “who is the boss of who in Dept. X”
and (b) is a plausible picture of “who loves who in Dept. X”. As can be seen,
(a) is almost a strict hierarchy, whereas (b) is not even connected (and thus
very far from being a hierarchy). That the “who loves who in Dept. X”
should form a hierarchy, like in (c), seems pretty unlikely because a relation
like “loves” is inherently non-hierarchical (as opposed to for instance “is the
boss of”). Consequently, even if the situation in (c) occurred, one might not
feel that this is a hierarchy. Thus,

2.1 Modeling as Hierarchical Abstraction 17

— Some kinds of relations are hierarchical of nature, and others are not.

— For the former it might be interesting to simplify the presentation of some
knowledge by cutting edges to obtain hierarchies.

— For the latter, it seems that such an approach would make no sense, as it
would be confusing rather than enlightening to present them as hierarchi-
cal.

Still, we have basically only made it clear that we want to deal with more
situations than what falls under the rather strict definition of Bunge — in fact
we want to be able to deal with almost any situation where something like a
hierarchical abstraction construct occurs. In the next section we will identify

some useful constructs in this respect.
loves / loves

nn Bo Dan

Sue.
is the boss of
M\
nn Bo/Din As‘ BqlDan
hal u Liz Rob Hal

Kim Al Stu Liz R Kim Al Stu Liz Rob Hal Kim A

(@) (b) (c)

Fig. 2.5. Hierarchical and non-hierarchical relations

2.1.2 Four Standard Hierarchical Relations

There is a vast number of hierarchies that one might want to model, and these
have rather diverse properties. Imagine for example organization hierarchies,
definition hierarchies, goal hierarchies, file system hierarchies, and operating
system process hierarchies.

Work in the field of semantic data modeling [174, 301, 307]) and semantic
networks ([117]) has lead to the identification of four standard hierarchical
relations:

— classification,
— aggregation,
— association, and
— generalization.

We define the following abbreviations:

abbr A
CAGA "= classification, aggregation, generalization, and association;

abbr o
AGA "= aggregation, generalization, and association.

18 2. Conceptual Modeling Languages

The four constructs have the following definition [307]:

Classification: specific instances are considered as a higher level object type
via the is-instance-of relationship (for example, “Rod Stewart” and “Mick
Jagger” are specific instances of “singers”).

Aggregation: an object is related to the components that make it up via the
is-part-of relationship (for example, a bicycle has wheels, a seat, a frame,
handlebars etc.).

Generalization: similar object types are abstracted into a higher level object
type via the is-a relationship ® (for example, an employee is a person).

Association: several object types are considered as a higher level set object-
type via the is-a-member-of relationship (for example, the sets “men” and
“women” are members of the set “sex-groups”). Association is also likely
to be encountered under the names of membership (e.g. [307]), grouping
(e.g. [174]), or collection (e.g. [156]).

Classification may be regarded as orthogonal to the other three — whereas
the others construct bigger things from smaller things (on the same meta-
level), classification results in a shift of meta-level, in accordance with the
philosophical notions of intension and extension [56, 96]. The intension of
“man” is the property of being a man, whereas the extension of “man” (in
any specific world, at any specific time) will be the set of all existing men (in
that specific world, at that specific time). Going one meta-level higher from
“man”, one can get to “species”, of whose extension “man” is a member (in
this particular world, at this particular time). One does not have to go much
higher until there are only very abstract notions like “words” and “concepts”,
so it is of limited interest to use many meta-levels in a model.

For the other three constructs, the complicated notions of intension and
extension are unnecessary, and rather straightforward set-theoretic definitions
can be provided:

— Aggregation corresponds to the Cartesian product: If the set A is said to
be an aggregation of the sets Ay, ... ,An this means that A C A; x ... X
A, i.e. each element of A consists of one element from each of Ay, ... ,An.

— Generalization corresponds to union: If the set A is a generalization of the
sets A1, ... ,Apn, this means that A C A; U ... U Ay.

— Association corresponds to membership (i.e. embracing by set brackets): If
the set A is an association of the sets Aj, ... ,Ay this means that A = {
Ay, ANT

Classification should not be confused with set-theoretic membership, nor
the notion of class with that of set, although there are clearly similarities in
both cases. A class can be viewed as a collection of its instances. Moreover,
each instance can be thought of as ’a member of ’ a class. However, a set is an
extensional notion whose identity is determined by its membership. Thus, two

3 Some authors use “is-a” for classification.

2.1 Modeling as Hierarchical Abstraction 19

sets A and B are equal if they have the same members, unlike classes where
equality cannot be decided by simply comparing their instances. Turning to
cognitive psychology, one has identified three types of theories to explain how
people develop and use categories [104]:

1. Attribute theory: Contends that one think of a list of defining attributes
or features. For example, fish swim and have gills. We have in this book
defined the term class according to this theory. There are some deficien-
cies of this approach. It is not always possible to specify defining features,
and it does not take into account goodness-of-examples effects; that some
instances are more typical and representative than others.

2. Prototype theory. States that when a person is presented a set of stim-
uli, they abstract the commonalties among the stimulus set and the ab-
stracted representation is stored in memory. A prototype is the best rep-
resentation of a category. For example, a prototypical fish might be the
size of a trout, have scales and fins, swim in an ocean, lake, or river and
so forth. We have a general or abstract conception of fish which somehow
is typical or representative of the variety of examples with which we are
familiar. When given a particular example, we compare it to the abstract
prototype of the category. If it is sufficiently similar to the prototype, we
then judge it to be an instance of the category.

3. Exemplar theory: Assumes that all instances are stored in memory. New
instances encountered are then compared with the set of exemplar already
known. This theory does not assume the abstraction of a prototype, a
best example.

Parsons and Wand [298] presents some guidelines for how to decide upon
classes and class structure based on the cognitive economy and inference.
Cognitive economy means that , by viewing many things as instances of
the same class, classification provides maximum information with the least
cognitive effort. Inference means that identifying an instance as a member
of a class makes it possible to draw conclusions. To decide upon potential
classes two principles are discussed:

1. Abstraction form instances: A class can be defined only if there are in-
stances in the relevant universe possessing all properties of the type that
defines the class.

2. Maximal abstraction: A relevant property possessed by all instances of a
class should be included in the class definition.

They propose two additional principles that apply to collections of classes:
Completeness, which requires that all properties from the relevant universe
be used in classification, and nonredundancy, which ensures that there are no
redundant classes. A class that is a subclass of several other classes should
be defined by at least one property not in any of its superclasses.

As indicated by [174], some works may use these terms somewhat differ-
ently:

20 2. Conceptual Modeling Languages

— Some languages (like for instance SDM [160] and TAXIS [271]) represent
aggregations by means of attributes (instead of cross product type con-
struction). The part-of relation can be looked upon as a special case of
aggregation. Based on work on object-oriented databases, this relation is
further Specialized [264]. A set of component objects which form a single
conceptual entity is referred to as a composite object, and the links con-
necting the components with this object are called part-of links. The model
allows to specify for each composite link whether the reference is exclusive,
i.e. the component exclusively belongs to the composite at a given point
in time, or shared, meaning that the component may possibly be part-of
several composites. Further, a part-of link can be defined to be either de-
pendent, which means that the existence of the component depends on the
existence of the composite, or independent, i.e. having existence irrespec-
tively of the composite. These specializations are orthogonal, giving four
possible relationships as exemplified below:

1. A brain is part-of a person (exclusive, dependent).

2. A paper is part-of a journal (exclusive, independent).

3. A subprogram is part-of a program library (shared, dependent).
4. A figure is part-of a paper (shared, independent).

— Some languages have identified several kinds of generalization. The follow-

ing types of generalizations are defined by Kung [219].

A set of subclasses of a class cover the class if all

members of the class are members of at least one of the subclasses.

A set of subclasses of a class are disjoint if no members of a subclass are
members of any of the other subclasses of the class.

A set of subclasses which are both disjoint and cover the class is called a
partition of the class.

— It is often useful to define association in terms of the powerset operator.
As suggested both by [174] and [301], association is commonly used for
constructing sets of objects of the same type. Consider the example of
Fig. 2.6 (taken from [174]), where the *-node denotes the association of
the “person” node, meaning that the former is a subset of the powerset of
the set of persons (i.e. each committee will have some group of members
taken from the set of persons). Since we do not want to express at an
abstract level the exact members of each committee, and since all members
are persons, the association operator will have only one child in this case
(whereas “men” and “women” being members of “sex-groups” earlier in
this chapter signaled a use of association with several children).

2.1.3 Strengths and Weaknesses of Suggested Relations

We will here briefly discuss the strength and weaknesses of the suggested
constructs.

2.1 Modeling as Hierarchical Abstraction 21

has—-name

Fig. 2.6. Association with a single child

Strengths. As indicated by [174, 301, 307], many modeling languages pro-
vide at least some of the CAGA constructs, and the effects of introducing
such constructs are positively described. [301] reports improvements in ex-
pressive economy, integrity maintenance, modeling flexibility, and modeling
efficiency. But why is it that languages tend to predefine exactly CAGA and
not any other hierarchical relations (like “is the boss of”)? The main reason
is their generality and intuitivity.

The generality of CAGA can be accounted for by the fact that they are
asubstantial. Whereas relations like “is-the-father-of” and “is-the-boss-of”
contain substantives “father” and “boss”, whose semantics clearly limit the
applicability of the relations, “is-part-of” uses the semantically very anony-
mous substantive “part”. Anything can be a “part” of something — the set
of potential fathers is much more limited. The substantives “instance”, “sub-
set”, “member” are similarly weak in semantic content. Defined in terms of
sets, with no commitment as to what these sets contain, these abstraction
mechanisms should be able to cover any application area. Thus, they can be
useful in organization modeling, process modeling, data modeling, hardware
modeling etc.

Moreover, CAGA are apparently very intuitive abstraction mechanisms,
which must be why they have become so popular in the first place. We seems
to find it natural to think of things as being put together from smaller parts
(aggregation), as being of a specific type (classification), as being members
of groups (association) which can have smaller subgroups (generalization).
This might partly be because we are being trained pretty much in using such
hierarchies in school, for instance learning languages (aggregation: assembling
words from letters, sentences from words, etc., classification: distinguishing
between word classes, identifying phrases as subject, predicate, direct object,
indirect object etc., generalization: different kinds of sentences, substantives,
verbs etc., association: memorizing lists of prepositions demanding a certain
case in German), learning biology, learning mathematics — whatever!

Weaknesses. However, there are also some weaknesses to be mentioned:

— The set-oriented definition of CAGA cause some limitations on their use.

22 2. Conceptual Modeling Languages

— Also, there are hierarchies which are certainly of interest in conceptual
modeling which are not covered by the CAGA scheme.

As can be seen from the set-theoretic definitions given in this chapter, clas-
sification means to move up one meta-level, from an instance to a type. The
other three are set-level constructs. Thus, there are two problems:

— What to do about instances?
— What to do about masses?

1. Instances:. Instances are not necessarily such a big problem. The associ-
ation construct is trivially applicable, since it can produce a set of instances
just as easily as a set of sets (“Peter, Patricia, and Joey are members of the
Party Committee”). Moreover, if we treat instances like sets with only one
member (like Quine does in [309]), the definition of aggregation just presented
is also trivially applicable (“The car # 346 was constructed from the chassis
9213, the carossery # 2134, and the engine #905”), and so is generalization
(with the limitation that it only seems to be useful in situations where the
general notion is a variable: “Joey’s murderer must have been either Peter or
Patricia”, in which case “Joey’s murderer” can be said to be a generalization
of “Peter” and “Patricia”).

Another question is hierarchical relations between instances (like “father-
of”, “boss-of”). It is difficult to know which instance level relations people
might want, and we cannot define an enormous amount of them in advance.
The wisest thing for a general framework might be to provide a generic re-
lation construct from which the users can define all the relations that they
need.

2. Mass Concepts. As Sowa points out in [352] the set-oriented way of think-
ing which permeates so many information systems models work well for things
that are countable, whereas there are problems for the so-called mass nouns,
like water, love, money. Again it appears that the notions of AGA are ap-
plicable (“Chocolate is made of cocoa, sugar and milk” (aggregation), “Milk
and water are both liquids” (generalization), “Milk and Water are members
of the set Liquids” (association)). However, the problem is that we cannot
use the set based definitions presented earlier in this chapter. There are two
possible ways out of this:

— One can go for a more general definition of AGA which is not at all based
on sets (but for instance on types).

— One can use the definitions already suggested and add some special tactics
for dealing with masses.

We will not delve into this in more detail in this book.

2.2 Overview of Languages for Conceptual Modeling 23

2.2 Overview of Languages for Conceptual Modeling

In this section, we survey “the state of the art” of modeling languages, in-
cluding those that have been applied in mature methodologies for system
development and maintenance and some that are still on the research level.
The overview will concentrate on the basic components and features of the
languages to illustrate different ways of abstracting human perception of re-
ality.

Modeling languages can be divided into classes according to the core phe-
nomena classes that are represented in the language. We have called this the
main perspective of the language. Another term often used, is structuring
principle.

Generally, we can define a structuring principle to be some rule or as-
sumption concerning how data should be structured. This is a very vague
definition — we observe that

— A structuring principle can be more or less detailed: on a high level one for
instance has the choice between structuring the information hierarchically,
or in a general network. Most approaches take a far more detailed attitude
towards structuring: deciding what is going to be decomposed, and how.
For instance, structured analysis implies that the things to be decomposed
are processes (maybe also stores and flows), and an additional suggestion
might be that the hierarchy of processes should not be deeper than 4 levels,
and the maximum number of processes in one decomposition 7.

— A structuring principle might be more or less rigid — in some approaches
one can override the standard structuring principle if one wants to, in
others this is impossible.

We will here basically discuss what we call aggregation principles. As
stated in the previous section, aggregation means to build larger components
of a system by assembling smaller ones. Going for a certain aggregation prin-
ciple thus implies decision concerning

— What kind of components to aggregate.
— How other kinds of components (if any) will be connected to the hierarchi-
cal structure.

Fights between the supporters of different aggregation principles can often
be rather heated. As we will show, the aggregation principle is a very impor-
tant feature of an approach, so this is very understandable. Some possible
aggregation principles are the following:

— Object-orientation.
— Process-orientation.
— Actor-orientation.

Objects are the things subject to processing, processes are the actions per-
formed, and actors are the ones who perform the actions. Clearly, these three

24 2. Conceptual Modeling Languages

approaches concentrate on different aspects of the perceived reality, but it is
easy to be mistaken about the difference. It is not which aspects they cap-
ture and represent that are relevant. Instead, the difference is one of focus,
representation, dedication, visualization, and sequence, in that an oriented
language typically prescribes that [290]:

— Some aspects are promoted as fundamental for modeling, whereas other
aspects are covered mainly to set the context of the promoted ones (focus).

— Some aspects are represented explicitly, others only implicitly (representa-
tion).

— some aspects are covered by dedicated modeling constructs, whereas others
are less accurately covered by general ones (dedication).

— Some aspects are visualized in diagrams, others only recorded textually
(visualization).

— Some aspects are captured before others during modeling(sequence).

Below we will investigate the characteristics of such perspectives in more
detail.

2.2.1 An Overview of Modeling Perspectives

A traditional distinction regarding modeling perspectives is between the
structural, functional, and behavioral perspective [283]. Yang [404], based
on [235, 388], identifies a ’full’ perspective to include the following:

— Data perspective. This is parallel to the structural perspective.

— Process perspectives. This is parallel to a functional perspective.

— Event/behavior perspective. The conditions by which the processes are
invoked or triggered. This is covered by the behavioral perspective.

— Role perspectives. The roles of various actors carrying out the processes of
a system.

In F3 [47], it is recognized that a requirement specification should answer the
following questions:

— Why is the system built?

— Which are the processes to be supported by the system?

— Which are the actors of the organization performing the processes?

— What data or material are they processing or talking about?

— Which initial objectives and requirements can be stated regarding the sys-
tem to be developed?

This indicate a need to support what we will term the rule-perspective, in
addition to the other perspectives mentioned included by Yang.

In the NATURE project [186], one distinguishes between four worlds:
Usage, subject, system, and development. Conceptual modeling as we use it
here applies to the subject and usage world for which NATURE propose data

2.2 Overview of Languages for Conceptual Modeling 25

models, functional models, and behavior models, and organization models,
business models, speech act models, and actor models respectively.

Based on the above, to give a broad overview of the different perspectives
state-of-the-art conceptual modeling approaches accommodate, we have fo-
cused on the following perspectives:

— Structural perspective

— Functional perspective

— Behavioral perspective

— Rule perspective

— Object perspective

— Communication perspective
— Actor and role perspective

This is obviously only one way of classifying modeling approaches, and
in many cases it will be difficult to classify a specific approach within this
scheme. On the other hand, it is usuful way of ordering the presentation.

Another way of classifying modeling languages is according to their time-
perspective [350]:

— Static perspective: Provide facilities for describing a snapshot of the per-
ceived reality, thus only considering one state.

— Dynamic perspective: Provide facilities for modeling state transitions, con-
sidering two states, and how the transition between the states take place.

— Temporal perspective: Allow the specification of time dependant con-
straints. In general, sequences of states are explicitly considered.

— Full-time perspective: Emphasize the important role and particular treat-
ment of time in modeling. The number of states explicitly considered at a
time is infinite.

Another way of classifying languages are according to their level of for-
mality. Conceptual modeling languages can be classified as semi-formal or
formal, having a logical and/or executional semantics. They can in addition
be used together with descriptions in informal languages and non-linguistic
representations, such as audio and video recordings.

We will below present some languages within the main perspectives, and
also indicate their temporal expressiveness and level of formality. Many of
the languages presented here are often used together with other languages in
so-called combined approaches. Some examples of such approaches will also
be given.

2.2.2 The Structural Perspective

Approaches within the structural perspective concentrate on describing the
static structure of a system. The main construct of such languages are the
”entity”. Other terms used for this role with some differences in semantics
are object, concept, thing, and phenomena.

26 2. Conceptual Modeling Languages

The structural perspective has traditionally been handled by languages
for data modeling. Whereas the first data modeling language was published in
1974 [174], the first having major impact was the entity-relationship language
of Chen [62].

Basic Vocabulary and Grammar of the ER-language:. In [62], the basic com-
ponents are:

— Entities. An entity is a phenomenon that can be distinctly identified.
Entities can be classified into entity classes;

— Relationships. A relationship is an association among entities. Relation-
ships can be classified into relationship classes;

— Attributes and data values. A value is used to give value to a prop-
erty of an entity or relationship. Values are grouped into value classes by
their types. An attribute is a function which maps from an entity class
or relationship class to a value class; thus the property of an entity or a
relationship can be expressed by an attribute-value pair.

An ER-model contains a set of entity classes, relationship classes, and at-
tributes. An example of a simple ER-model is given in Fig. 3.3.

Several extensions have later been proposed for so-called semantic data
modeling languages [174, 301], with specific focus on the addition of mecha-
nisms for hierarchical abstraction.

Basic Vocabulary and Grammar for Semantic Data Modeling Language:. In
Hull and King’s overview [174] a generic semantic modeling language (GSM)
is presented. Figure 2.7 illustrates the vocabulary of GSM:

Personalemail
(1-1,partial) NAME

SPEAKS
(4 .
I ’ ‘
ANGUAGE (EIRSTNAME) CINITIALS) (LAS‘TNAME)

(EMAIL)

OF

CONFERENCE
ORGANIZER

CONTRIf PARTICI—
BUTER
LEGEND:
-— = ® — —
A\
Printable type Abstract type Generalization Subtype Aggregation Association Attribute Attribute
(grouping) (single— (Multi—
valued) valued

Fig. 2.7. Example of a GSM model

2.2 Overview of Languages for Conceptual Modeling 27

— Primitive types. The data types in GSM are classified into two kinds:
the printable data types, that are used to specify some visible values, and
the abstract types that represent some entities. In the example, the follow-
ing printable types can be identified: Email-address, language, firstname,
initials, and lastname.

— Counstructed types built by means of abstraction. The most often
used constructors for building abstractions are generalization, aggregation,
and association. In the example we find Person as an abstract type, with
specializations conference organizer, referee, contributer, and participant.
Name is an aggregation of firstname, initials, and lastname, whereas lan-
guages is an association of a set of language

— Attributes.

In addition it is possible to specify derived classes in GSM.

Relationships between instances of types may be defined in different ways.
We see in Fig. 2.7 that a relationship is defined by a two-way attribute (an
attribute and its inverse). In the ER modeling language, a relationship is
represented as an explicit type. The definition of relationship types provides
the possibility of specifying such relationships among the instances of more
than two types as well as that of defining attributes of such relationship types.

Other approaches:. The NIAM language [273] is a binary relationship lan-
guage, which means that relationships that involve three or more entities are
not allowed. Relationships with more than two involved parts will thus have
to be objectified (i.e. modeled as entity sets instead). In other respects, the
NIAM language has many similarities with ER, although often being classi-
fied as a form of object-role modeling. The distinction between entities and
printable values is reflected in NTAM through the concepts of lexical and non-
lexical object types, where the former denote printable values and the latter
abstract entities. Aggregation is provided by the relationship construct just
like in ER, but NIAM also provides generalization through the subobject-
type construct. The diagrammatic notation is rather different from ER, but
we will not discuss the details of this here. Another binary relationship lan-
guage, ERT, will be briefly presented as part of the presentation on Tempora
in Sect. 2.2.5. A distinguishing feature of this language is the modeling of
temporal aspects.

Another type of structural modeling languages are semantic networks [350].
A semantic network is a graph where the nodes are objects, situations, or
lower level semantic networks, and the edges are binary relations between
the nodes. Semantic networks constitute a large family of languages with
very diverse expressive power. Sowa’s conceptual graph formalism [352] can
be said to be a special kind of semantic network language. The language is
based on work within linguistics, psychology, and philosophy. In the models,
concept nodes represent entities, attributes, states, and events, and relation
nodes show how the phenomena classes are interconnected. A conceptual

28 2. Conceptual Modeling Languages

graph is a finite, connected, bipartite graph. Every conceptual relation has
one or more arcs.

Each conceptual graph asserts a single proposition and has no meaning
in isolation. Only through a semantic network are its concepts and relations
linked to context, language, emotion, and perception. Figure 2.8 shows a
conceptual graph for the proposition a cat sitting on a mat. Dotted lines link
the nodes of the graph to other parts of the semantic network.

— Concrete concepts are associated with percepts for experiencing the world
and motor mechanisms for acting upon it.

— Some concepts are associated with the vocabulary and grammar rules of a
language.

— A hierarchy of concept types defines generalization relationships between
concepts.

— Formation rules determine how each type of concept may be linked to
conceptual relations.

— Each conceptual graph is linked to some context or episode to which it is
relevant.

— Each episode may also have emotional associations, which indirectly confer
emotional overtones on the types of concepts involved.

Rules for assembling percepts Words
,\ /////(\
~< —— s 2
| S 7 \\
|- T~ e \;//%rammar rules
Perceptsf::::—___/_/f _____ >< Pt aN
\ —~. | -~:>€: e N
\ 4 \\\: ~—1 \ \\7‘\\ \\
\ // I\\ Pre / \ / ~ \
\ / /\/\ [\ ~ \
\ | | N
/ / A | \ \
\ / 'y, N | \ \\ \
CAT @ SIT @ MAT
7 1 —
l\Q\ e A /7 paya
AN /s AN 1 VA
(N TSN T P
\ Sy — e Y - ;o
B Y — N>~ /
Procedures™ = —\— — R T =TT S~ 7 /
\ | > —~<L__ e P e L
\ S~ 7 —— L — — ——— —=/Episodes
\ >< -7 _ - \\ / /
\ =T N s
NZ===—"" T—_\ -

Type definition: Emotions ~ —

"

Fig. 2.8. A conceptual graph linked to a semantic network (From [352])

Also many object-oriented modeling languages can be classified as having
a structure perspective. Object-orientation is discussed further in Sect. 2.2.6
and Sect. 2.2.8.

2.2 Overview of Languages for Conceptual Modeling 29

2.2.3 The Functional Perspective

The main phenomena class in the functional perspective is the process: A
process is defined as an activity which based on a set of phenomena transforms
them to a possibly empty set of phenomena.

The best know conceptual modeling language with a process perspective is
data flow diagrams (DFD) [129] which describes a situation using the symbols
illustrated in Fig. 2.9:

El _—

process store flow external
entity

Fig. 2.9. Symbols in the DFD language

— Process. Illustrates a part of a system that transforms a set of inputs to
a set of output:

— Store. A collection of data or material.

— Flow. A movement of data or material within the system, from one system
component (process, store, or external entity) to another;

— External entity. An individual or organizational actor, or a technical
actor that is outside the boundaries of the system to be modeled, which
interact with the system.

With these symbols, a system can be represented as a network of processes,
stores and external entities linked by flows. A process can be decomposed
into a new DFD. When the description of the process is considered to have
reached a detailed level where no further decomposition is needed, “process
logic” can be defined in forms of e.g. structured English, decision tables, and
decision trees.

When a process is decomposed into a set of sub-processes, the sub-
processes are grouped around the higher level process, and are co-operating
to fulfill the higher-level function. This view on DFDs has resulted in the
“context diagram” [129] that regards the whole system as a process which
receives and sends all inputs and outputs to and from the system. A context
diagram determine the boundary of a system. Every activity of the system
is seen as the result of a stimulus by the arrival of a data flow across some
boundary. If no external data flow arrives, then the system will remain in a
stable state. Therefore, a DFD is basically able to model reactive systems.

DFD is a semi-formal language. Some of the short-comings of DFD re-
garding formality are addressed in the transformation schema presented by
Ward [390]. The main symbols of his language are illustrated in Fig. 2.10.

30 2. Conceptual Modeling Languages

1)TRANSFORMATIONS ~ 2)DATA FLOWS 3)EVENT FLOWS 4) STORES
SIGNAL
DISCRETE DATA PN -
DATA

N\ STORE
ACTIVATION -
- - . N —

- CONTINUOUS DATA BUFFER
COON T

[controL) TR DEACTIVATION

\\\// ///\»

Fig. 2.10. Symbols in the transformation schema language

There are four main classes of symbols:

— 1. Transformations: A solid circle represent a data transformation, which
are used approximately as a process in DFD. A dotted circle represents a
control transformation which controls the behavior of data transformations
by activating or deactivating them, thus being an abstraction on some
portion of the systems’ control logic.

— 2. Data flows: A discrete data flow is associated with a set of variable
values that is defined at discrete points in time. Continuous data flows
are associated with a value or a set of values defined continuously over a
time-interval.

— 3. Event flows: These report a happening or give a command at a discrete
point in time. A signal shows the sender’s intention to report that some-
thing has happened, and the absence of any knowledge on the sender’s
part of the use to which the signal is put. Activations show the senders
intention to cause a receiver to produce some output. A deactivation show
the senders intention to prevent a receiver from producing some output.

— 4. Stores: A store acts as a repository for data that is subject to a a
storage delay. A buffer is a special kind of store in which flows produced by
one or more transformations are subject to a delay before being consumed
by one or more transformations. It is an abstraction of a stack or a queue.

Both process and flow decomposition are supported.
Whereas Ward had a goal of formalizing DFD’s , Opdahl and Sindre [287,
289] try to adapt data flow diagrams to what they term ’real-world modeling’.
Problems they note with DFD in this respect are as follows:

— ’Flows’ are semantically overloaded: Sometimes a flow means transporta-
tion, other times it merely connects the output of one process to the input
of the next.

— Parallelism often has to be modeled by duplicating data on several flows.
This is all right for data, but material cannot be duplicated in the same
way.

2.2 Overview of Languages for Conceptual Modeling 31

— Whereas processes can be decomposed to contain flows and stores in addi-
tion to sub-processes, decomposition of flows and stores is not allowed. This
makes it hard to deal sensibly with flows at high levels of abstraction [46].

These problems have been addressed by unifying the traditional DFD vocab-
ulary with a taxonomy of real-world activity, shown in Table 2.1: The three
DFD phenomena “process,” “flow”, and “store” correspond to the physical
activities of “transformation,” “transportation”, and “preservation” respec-
tively. Furthermore, these three activities correspond to the three fundamen-
tal aspects of our perception of the physical world: matter, location, and
time. Hence, e.g., an ideal flow changes the location of items in zero time
and without modifying them.

Since these ideal phenomena classes are too restricted for high level model-
ing, real phenomena classes were introduced. Real processes, flows, and stores
are actually one and the same, since they all can change all three physical
aspects, i.e., these are fully inter-decomposable. The difference is only subjec-
tive, i.e., a real-world process is mainly perceived as a transformation activity,
although it may also use time and move the items being processed.

Additionally, the problem with the overloading of flow’ is addressed by
introducing a link, for cases where there are no transportation. Links go
between ports located on various processes, stores and flows, and may be
associated with spatial coordinates

[287] also provides some definitions relating to the items to be processed,
including proper distinctions between data and material. Items have at-
tributes which represent the properties of data and materials, and they be-
long to item classes. Furthermore classes are related by the conventional
abstraction relations aggregation, generalization, and association. Hence the
specification of item classes constitute a static model which complements the
dynamic models comprising processes, flows, stores, and links.

Table 2.1. A data flow diagram taxonomy of real-world dynamics

Phenomena class Process Flow Store
Activity Transformation Transportation Preservation
Aspect Matter Location Time

The symbols in the language are shown in Fig. 2.11. The traditional DFD
notation for processes and flows are retained, however, to facilitate the vi-
sualization of decomposition, it is also possible to depict the flow as an en-
larged kind of box-arrow. Similarly, to facilitate the illustration of decom-
posed stores, full rectangles instead of open-ended ones are used. Links are
shown as dotted arrows.

32 2. Conceptual Modeling Languages

—>

— L1 > .

Process Flow Store Link Port

Fig. 2.11. Symbols in the real-world modeling language

2.2.4 The Behavioral Perspective

In most languages with a behavioral perspective the main phenomena are
states and transitions between states. State transitions are triggered by
events [79].

A finite state machine (FSM) is a hypothetical machine that can be in only
one of a given number of states at any specific time. In response to an input,
the machine generates an output, and changes state. There are two language-
types commonly used to model FSM’s: State transition diagrams (STD) and
state transition matrices (STM). The vocabulary of state transition diagrams
is illustrated in Fig. 2.12 and are described below:

el(cl)/al \ @
@ XN \\ \
N

A\ NN
\ \ \\ < MTransision
AN .
\‘ \ \\ Action
State Event Condition

Fig. 2.12. Symbols in the state transition modeling language

— State: A system is always in one of the states in the lawful state space
for the system. A state is defined by the set of transitions leading to that
state, the set of transitions leading out of that state and the set of values
assigned to attributes of the system while the system resides in that state.

— Event: An event is a message from the environment or from system itself
to the system. The system can react to a set of predefined events.

— Condition: A condition for reacting to an event. Another term used for
this is ’guard’.

— Action: The system can perform an action in response to an event in
addition to the transition.

— Transition: Receiving an event will cause a transition to a new state if
the event is defined for the current state, and if the condition assigned to
the event evaluates to true.

2.2 Overview of Languages for Conceptual Modeling 33

A simple example that models the state of a paper during the preparation of
a professional conference is depicted in Fig. 2.13. The double circles indicate
end-states.

Non-existent Received Confirmed Distributed

Receive Send Distribute
0 paper Q confirmation 2 paper 3

Accepted

Receive

Accept review

) Receive CRC aper
Received CV pap Reviewed
Receive CRC Conditionally Conditionally 4 Receive
(satisfactory) ~ accepted accept paper
) Deadline .
Publish Deadline _expire Reject

proceedings expire paper

Receive CRC
X (not satisfactory)
Published

Fig. 2.13. Example of a state transition model

@ Rejected

In a STM a table is drawn with all the possible states labeling the rows
and all possible stimuli labeling the columns. The next state and the required
system response appear at each intersection [80]. In basic finite state machine
one assume that the system response is a function of the transition. This
is the Mealy model of a finite state machine. An alternative is the Moore
model in which system responses are associated with the state rather than
the transitions between states. Moore and Mealy machines are identical with
respect, to their expressiveness.

It is generally acknowledged that a complex system cannot be benefi-
cially described in the above fashion, because of the unmanageable, exponen-
tially growing multitude of states, all of which have to be arranged in a ’flat’
model. Hierarchical abstraction mechanisms are added to traditional STD in
Statecharts [161] to provide the language with modularity and hierarchical
construct as illustrated in Fig. 2.14.

il

XOR decomposition AND decomposition

Fig. 2.14. Decomposition mechanisms in Statecharts

34 2. Conceptual Modeling Languages

— XOR decomposition: A state is decomposed into several states. An event
entering this state (A) will have to enter one and only one of its sub-states
(B or C). In this way generalization is supported.

— AND decomposition: A state is divided into several states. The system
resides in all these states (B, C, and D) when entering the decomposed
state (A). In this way aggregation is supported.

One has introduced the following mechanisms to be used with these abstrac-
tions:

— History: When entering the history of a XOR decomposed state, the sub-
state which was visited last will be chosen.

— Deep History: The semantics of history repeated all the way down the
hierarchy of XOR decomposed states.

— Condition: When entering a condition inside a XOR decomposed state,
one of the sub-states will be chosen to be activated depending on the value
of the condition.

— Selection: When entering a selection in a state, the sub-state selected by
the user will be activated.

In addition support for the modeling of delays and time-outs is included.
Fig. 2.15 shows the semantics behind these concepts and various activating
methods available.
Statecharts are integrated with functional modeling in [164]. Later exten-
sions of statecharts for object-oriented modeling is reported in [68, 163, 319].
The latter of these will be described in Sect. 2.2.6.

Petri-Nets. Petri-nets [304] is another well-known behaviorally oriented
modeling language. A model in the original Petri-net language is shown in
Fig. 2.16. Here, places indicate a system state space, and a combination of
tokens included in the places determine the specific system state. State tran-
sitions are regulated by firing rules: A transition is enabled if each of its input
places contains a token. A transition can fire at any time after it is enabled.
The transition takes zero time. After the firing of a transition, a token is
removed from each of its input places and a token is produced in all output
places.

Figure 2.16 shows how dynamic properties like precedence, concurrency,
synchronization, exclusiveness, and iteration can be modeled in a Petri-net.
The associated model patterns along with the firing rule above establish the
execution semantics of a Petri-net.

The classical Petri net cannot be decomposed. This is inevitable by the
fact that transitions are instantaneous, which makes it impossible to compose
more complex networks (whose execution is bound to take time) into higher
level transitions. However, there exists several more recent dialects of the
Petri net language (for instance [253])) where the transitions are allowed
to take time, and these approaches provide decomposition in a way not very

2.2 Overview of Languages for Conceptual Modeling 35

=D

Standard activation: Default activation:
B, and then A will A, and then C will
become active. become active.

=

History activation: Deep history activation:
Last active of B and C, The last active of D and E,
and then A will become and then the last active of
active. B and C, and then A will

become active.

a) a)

Conditional activation: Selection activation:
States fulfilling the The state selected will
condition will become become active.
active.

Fig. 2.15. Activation mechanisms in Statecharts

different from that of a data flow diagram. Timed Petri Nets [253] also provide
probability distributions that can be assigned to the time consumption of each
transition and is particularly suited to performance modeling.

BNM (Behavior Network Model) is a language for describing information
system structure and behavior — an example diagram is shown in Fig. 5.4.
The language uses Sglvbergs Phenomenon Model [348] for data modeling,
coupled with an extended Petri net formalism for dynamic modeling. This
coupling is shown by edges between places in the Petri net and phenomenon
classes. The token of a place can either be an element of a phenomenon class

36 2. Conceptual Modeling Languages

Q"'”""Place

Precedence " >+ Transition

Concurrency

i
\‘/ v

I

= Synchronization

L O

Iteration

Fig. 2.16. Dynamic expressiveness of Petri-nets

(the edge is annotated with “€”, e.g. Messages in the example) or it can be
the whole class (the edge is annotated with “=” e.g. Orders in the example).
The Petri nets of BNM differ from standard Petri nets in that

— Tokens are named and typed variables, i.e. one have a so-called colored
Petri-net. Class variables have capital letters and element variables have
small letters.

— There are two kinds of input places to a transition: consumption places and
reference places. For the former, a token is consumed when a transition
fires, whereas the latter is not consumed. A reference place is indicated by
a dotted line.

— Transitions are allowed to take time.

— Transitions have pre- and postconditions in predicate logic. For a transition
to fire, its precondition must be true, and by the firing its postcondition
will become true.

2.2 Overview of Languages for Conceptual Modeling 37

Otherwise, the BNM semantics are in accordance with standard Petri net
semantics.

2.2.5 The Rule Perspective

A rule has been defined as follows:

A rule is something which influences the actions of a non-empty set
of actors. A rule is either a rule of necessity or a deontic rule [393].
A rule of necessity is a rule that must always be satisfied. It is
either analytic or empirical (see below).

A rule of necessity which can not be broken because of an inter-
subjectively agreed definition of the terms used in the rules is called
analytic.

A rule of necessity that can not be broken according to present shared
explicit knowledge is called empirical.

A deontic rule is a rule which is only socially agreed among a set
of persons. A deontic rule can thus be violated without redefining
the terms in the rule. A deontic rule can be classified as being an
obligation, a recommendation, a permission, a discouragement, or a
prohibition [214].

The general structure of a rule is
“if condition then expression”

where condition is descriptive, indicating the scope of the rule by designating
the conditions in which the rule apply, and the expression is prescriptive.
According to Twining [373] any rule, however expressed, can be analyzed
and restated as a compound conditional statement of this form.

Current Applications. Representing knowledge by means of rules is not a
novel idea. According to Davis and King [82], production systems were first
proposed as a general computational mechanism by Post in 1943. Today,
rules are used for knowledge representation in a wide variety of applications,
such as expert systems, tutoring and planning systems, database systems and
requirement specification in general. It is the use of rules within requirement
specification that will be our focus here.

Several advantages have been experienced with a declarative, rule-based
approach to information systems modeling:

— Problem-orientation: The representation of business rules declaratively
is independent of what they are used for and how they will be imple-
mented. With an explicit specification of assumptions, rules, and con-
straints, the analyst has freedom from technical considerations to reason
about application problems [85, 153]. This freedom is even more impor-
tant for the communication with the stakeholders with a non-technical
background [37, 45, 155, 374].

38 2. Conceptual Modeling Languages

— Maintenance: A declarative approach makes possible a one place represen-
tation of every rule and fact, which is a great advantage when it comes to
the maintainability of the specification [281].

— Knowledge enhancement: The rules used in an organization, and as such
in a supporting CIS, are not always explicitly given. In the words of Stam-
per [354] “Every organization, in as far as it is organized, acts as though
its members were confronting to a set of rules only a few of which may be
explicit *.” This has inspired certain researchers to look upon CIS specifi-
cation as a process of rule reconstruction [143], i.e. the goal is not only to
represent and support rules that are already known, but also to uncover de
facto and implicit rules which are not yet part of a shared organizational
reality, in addition to the construction of new, possibly more appropriate
ones.

On the other hand, several problems have been observed when using a simple
rule-format. Although addressed in different ways in different areas, many of
these also applies to the use of rules for conceptual modeling.

— Every statement must be either true or false, there is nothing in between.

— It is usually not possible to distinguish between rules of necessity and
deontic rules [395].

— In many rule modeling languages it is not possible to specify who the rules
apply to.

— Formal rule languages have the advantage of eliminating ambiguity. How-
ever, this does not mean that rule based models are easy to understand.
There are two problems with the comprehension of such models, both the
comprehension of single rules, and the comprehension of the whole rule-
base. Whereas the traditional operational models have decomposition and
modularization facilities which make it possible to view a system at various
levels of abstraction and to navigate in a hierarchical structure, rule mod-
els are usually flat. With many rules such a model soon becomes difficult
to grasp, even if each rule should be understandable in itself. According
to Li [233] this often makes rule-based systems both unmaintainable and
untestable and as such unreliable.

— A general problem is that a set of rules is either consistent or inconsis-
tent. On the other hand, human organizations may often have more or less
contradictory rules.

Some approaches to rule-based modeling that tries to address some of
these problems are presented below.

COMEX [383, 384] is a tool for editing and executing task models. The
task model is based on PPM in PPP (see description in Sect. 2.5). A task
corresponds to a process in a DFD. Each task is associated with a set of rules
and has a coupling between the task model and the rules similar to the one
in Tempora.

4 Our italics.

2.2 Overview of Languages for Conceptual Modeling 39

Tempora . Tempora [243] was an ESPRIT-3 project that finished in 1994. Tt
aimed at creating an environment for the development of complex application
systems. The underlying idea was that development of a CIS should be viewed
as the task of developing the rule-base of an organization, which is used
throughout development.

Tempora has three closely interrelated languages for conceptual modeling.

ERT [256, 367], being an extension of the ER language, PID [152, 367], being
an extension of the DFD in the SA/RT-tradition, and ERL [254, 367], a
formal language for expressing the rules of an organization.
The ERT Language. The basic modeling constructs of ERT are: Entity
classes, relationship classes, and value classes. The language also contains
the most usual constructs from semantic data modeling [301] such as gen-
eralization and aggregation, and derived entities and relationships, as well
as some extensions for temporal aspects particular for ERT. It also has a
grouping mechanism to enhance the visual abstraction possibilities of ERT
models. The graphical symbols of ERT are Shown in Fig. 2.17.

H Entity class A and derived entity
A A H class A (dashed). Derived classes

' are intentionally defined through
derivation rules.

H H Time stamped entity class B and
B T H B VT time stamped derived entity class

H H H B. Timestamping indicates that
historical information about the
instances of the class is stored.

Complex entity class C and
C D complex value class D. Complex
J classes is a grouping construct
used to support visual abstraction.

pmmmmmmmmmnes, " Simple value class E, F. May have
E : F H relationships to nodes of type
: A A, B, C,orD.

Relationship that may connect nodes

a b a - b of type A, B, C, D, E, or F. aand b are
T._Z _ relationship names. m1 and m2
m ml ---¢ m2 indicate cardinality being either non—

negative integers or N. Also relationships
can be derived (dashed)

Time stamped binary relationships

ISA relationship. Filled circle —>
total partition, non-filled circle—>

> partial partition.
Several arrows pointing to a
circle indicate disjoint subsets.

Fig. 2.17. Symbols in the ERT languages

The PID Language. This language is used to specify processes and their
interaction in a formal way. The basic modeling constructs are: processes,
ERT-views being links to an ERT-model, external agents, flows (both control
and data flows), ports, and timers, acting as either clocks or delays. The
graphical symbols of PID’s are shown in Fig. 2.18.

40 2. Conceptual Modeling Languages

—— ERT-view
E;(g;rtnal Process Control and data flow

—

Ports
j > > ----- -]
AND XOR OR COND REP

Fig. 2.18. Symbols in the PID language

The External Rule Language (ERL). The ERL is based on first-order tem-
poral logic, with the addition of syntax for querying the ERT model. The
general structure of an ERL rule is as follows:

when trigger if condition, then consequence else consequence.

— trigger is optional. It refers to a state change, i.e. the rule will only be
enabled in cases where the trigger part becomes true, after having been
previously false. The trigger is expressed in a limited form of first order
temporal logic.

— condition is an optional condition in first order temporal logic.

— consequence is an action or state which should hold given the trigger and
condition. The consequence is expressed in a limited form of first order tem-
poral logic. The ’else’ clause indicates the consequence when the condition
is not true, given the same trigger.

ERL-rules have both declarative and procedural semantics. To give procedu-
ral semantics to an ERL-rule, it must be categorized as being a constraint, a
derivation rule, or an action rule. In addition, it is possible to define predi-
cates to simplify complex rules by splitting them up into several rules.

The rule can be expressed on several levels of details from a natural lan-
guage form to rules which can be executed.

— Constraints express conditions on the ERT database which must not be
violated.

— Derivation rules express how data can be automatically derived from data
that already exist.

— Action rules express which actions to perform under what conditions. Ac-
tion rules are typically linked to atomic processes in the process model,
giving the execution semantics for the processes as illustrated in Fig. 2.19.
A detailed treatment of the relationship between processed and rules is
given in [255, 331].

The main extension in ERL compared to other rule-languages is the tem-
poral expressiveness. At any time during execution, the temporal database

2.2 Overview of Languages for Conceptual Modeling 41

PROCESS .
when trigger
if condition and P

then consequence

trigger
_>:| consequence.
condition - P —

Fig. 2.19. Relationship between the PID and ERL languages (from [212])

will have stored facts not only about the present time, but also about the past
and the future. This is viewed as a sequence of databases, each associated
with some tick, and one may query any of these databases. ERL rules are
always evaluated with respect to the database that corresponds to the real
time the query is posed.

In addition to linking PID to ERT-models and ERL-rules to ERT-models
and PIDs, one have the possibility of relating rules in rule hierarchies. The
relationships available for this in Tempora are [330, 344]:

— Refers-to: Used to link rules where definitions or the introduction of a
necessary situation can be found in another rule.

— Necessitates and motivates: Used to create goal-hierarchies.

— Opverrules and suspends: These deal with exceptions. If an action is over-
ruled by another rule, then it will not be performed at all, whereas an
action which is suspended, can be performed when the condition of the
suspending rule no longer holds. With these two relations, exceptions can
be stated separately and then be connected to the rules they apply to.
This provides a facility for hiding details, while obtaining the necessary
exceptional behavior when it is needed.

Tempora is one of many goal-oriented approaches that has appeared in
the nineties, Other such approaches are described below. In the ABC method
developed by SISU [397] a goal-model is supported, where goals can be said
to obstruct, contribute to, or imply other goals. A similar model is part of
the F3 modeling languages [47]. Other examples of goal-oriented requirement
approaches is reported by Feather [114] where the possible relations between
goals and policies are Supports, Impedes, and Augments. Goals can also be
subgoals i.e decompositions of other goals. Sutcliffe and Maiden [356], and
Mylopoulos et al. [270] who use a rule-hierarchy for the representation of non-
functional requirements are other examples which we will describe further
below.

Sutcliffe. [356] differentiate between six classes of goals:

— 1. Positive state goals: Indicate states which must be achieved.
— 2. Negative state goals: Express a state to be avoided.

42 2. Conceptual Modeling Languages

— 3. Alternative state goal: The choice of which state applies depends on
input during run-time.

— 4. Exception repair goal: In these cases nothing can be done about the
state an object achieves, even if it is unsatisfactory and therefore must be
corrected in some way.

— 5. Feedback goals: These are associated with a desired state and a range
of exceptions that can be tolerated.

— 6. Mixed state goals: A mixture of several of the above.

For each goal-type there is defined heuristics to help refine the different goal-
types. Most, parent nodes in the hierarchy will have ’and’ relations with the
child nodes, as two or more sub-goals will support the achievement of a
higher level goal, however there may be occasions when ’or’ relations are
required for alternatives. Goals are divided into policies, functional goals and
domain goals. The policy level describes statements of what should be done.
The functionally level has linguistic expressions containing some information
about how the policy might be achieved. Further relationship types may be
added to show goal conflicts, such as ’inhibits’, ’promotes’, and ’enables’ to
create an argumentation structure. On the domain level templates are used
to encourage addition of facts linking the functional view of aims and purpose
to a model in terms of objects, agents, and processes.

Figure 2.20 illustrates a possible goal hierarchy for a library indicating
examples of the different goal-types.

Mylopoulos et al. [63, 270] describes a similar language for representing non-
functional requirements, e.g. requirements for efficiency, integrity, reliability,
usability, maintainability, and portability of a CIS. The framework consists
of five major components:

1. A set of goals for representing non-functional requirements, design deci-
sions and arguments in support of or against other goals.

2. A set of link types for relating goals and goal relationships.

A set of generic methods for refining goals into other goals.

4. A collection of correlation rules for inferring potential interaction among
goals.

5. A labeling procedure which determines the degree to which any given
non-functional requirement is being addressed by a set of design decisions.

w

Goals are organized into a graph-structure in the spirit of and/or-trees, where
goals are stated in the nodes. The goal structure represents design steps,
alternatives, and decisions with respect to non-functional requirements. Goals
are of three classes:

— Nonfunctional requirements goals: This includes requirements for accuracy,
security, development, operating and hardware costs, and performance.

— Satisficing goals: Design decisions that might be adopted in order to satis-
fice one or more nonfunctional requirement goal.

2.2 Overview of Languages for Conceptual Modeling 43

Make library
Policy level more effective
'Srgﬁfi‘é‘ée reader Reduce costs
/ / \
Functional / \I
oal level ncrease
g Egg&igﬁ% shelf Reduce
Ensure life staff

good access
Provide

better
iy \\

Help readers
find items

Decrease Ensure stock RN
stock-out matches need " Keep short
loans

®

tag + Repair E:ﬁk
monitor damaged backs
books books

@

Buy more Buy more .,
titles copies “,
'~.,‘ Ensure
", Teturns Management
@ ‘e, Monitor Provide Provide decission
v - book usage search browsing
Restrict facilities facilities !
Management e @ } thErat|o+n Al
nag change
decission New IS IS change

functions

@

Fine readers for
Recall books

overues unless Domain

IS within 7 days ood excuse
change -e—of due date 9 = New IS function goal level
@ operational change
. . > Goal consequence after
LEGEND: @ : Goal type comparison with existing system

Fig. 2.20. Example of a goal hierarchy (From [356])

— Arguments: Represent formally or informally stated evidence or counter-
evidence for other goals or goal-refinements.

Nodes are labeled as undetermined (U), satisficed (S) and denied (D).
The following link types are supported describing how the satisficing of
the offspring or failure thereof relates to the satisficing of the parent goal:

— sub: The satisficing of the offspring contributes to the satisficing of the
parent.

— sup: The satisficing of the offspring is a sufficient evidence for the satisficing
of the parent.

— -sub: The satisficing of the offspring contributes to the denial of the parent

— -sup: The satisficing of the offspring is a sufficient evidence for the denial
of the parent.

— und: There is a link between the goal and the offspring, but the effect is as
yet undetermined.

Links can relate goals, but also links between links and arguments are possi-
ble. Links can be induced by a method or by a correlation rule (see below).

Goals may be refined by the modeler, who is then responsible for satisfic-
ing not only the goal’s offspring, but also the refinement itself represented as
a link. Alternatively, the framework provides goal refinement methods which

44

2. Conceptual Modeling Languages

These are of different kinds: Goal decomposition methods, goal satisficing
methods, and argumentation methods.

represent generic procedures for refining a goal into one or more offsprings.
As indicated above, the non-functional requirements set down for a par-

ticular system may be contradictory. Guidance is needed in discovering such

implicit relationship and in selecting the satisficing goals that best meet the

need of the non-functional goals. This is achieved either through external
input by the designer or through generic correlation rules.

Userfriendliness
[Account

Sec[Account]
) @ Subsort3
Integrity
[account]
Conf[account] Avalil
@ [Account]
Acc —
[Account]
Completeness @
> [Account] Systemboundary
b 3 sub Identification
-su : @ Intconf{Account]
5 sub subset [smallaccounts*]
@ Intconf
[largeaccounts*]
Access
authorization Cardkey VitalFewTrivialMany
@ﬁ Password InformalClaim
Biometric Specialization Criticality CSJ ['Large accounts are.
[Acwunt] few, but highly sensitive"]
\\ OneSidedAuthentication @ {g::;:afxccounts*]
\ MutualAuthentication
\ sub
\
\ Alarm[largeaccounts*]
\
| Employee
\ PhysicalAlarm
\\ Softalarm[largeaccounts*]
Al
EmployeeWithPersonal
Characteristics Employee
largeAccounts = {x | x account and x.amount > $5000}
Legend
(O NFRGoal . method-induced link
......... & correlation—rule—induced link
O Satisficing goal - dependancy link
AND node OR node
CJ Argument -

__ _=. |ustification for selection

Fig. 2.21. Example of a goal-graph (From [63])

An example showing how to fulfill the security requirements of a bank’s
credit card system is given in Fig. 2.21. The example shows how to fulfill the
security requirements of a bank’s credit card system. Starting from the top,

the method Subsort3 is used to decompose the goal into three other goals for

2.2 Overview of Languages for Conceptual Modeling 45

integrity, confidentiality and availability. A correlation rule comes into play
when an offspring has an impact on some goals other than the parent.

2.2.6 The Object Perspective

The basic phenomena of object oriented modeling languages are similar to
those found in most object oriented programming languages:

— Object: An object is an “entity” which has a unique and unchangeable
identifier and a local state consisting of a collection of attributes with
assignable values. The state can only be manipulated with a set of methods
defined on the object. The value of the state can only be accessed by
sending a message to the object to call on one of its methods. The details
of the methods may not be known, except through their interfaces. The
happening of an operation being triggered by receiving a message, is called
an event.

— Process: The process of an object, also called the object’s life cycle, is the
trace of the events during the existence of the object.

— Class: A set of objects that share the same definitions of attributes and
operations compose an object class. A subset of a class, called subclass,
may have its special attribute and operation definitions, but still share all
definitions of its superclass through inheritance.

A survey of current object-oriented modeling approaches is given in [396].
According to this, object-oriented analysis should provide several represen-
tations of a system to fully specify it:

— Class relationship models: These are similar to ER models.

— Class inheritance models: Similar to generalization hierarchies in semantic
data-models.

— Object interaction models: Show message passing between objects

— Object state tables (or models): Follow a state-transition idea as found in
the behavioral perspective.

— User access diagrams: User interface specification.

A general overview of phenomena represented in object-modeling languages
is given in Fig. 2.22.

These break down into structural, behavioral, and rules, cf. Sect. 2.2.2,Sect. 2.2.4,
and Sect. 2.2.5.

Static phenomena break down into type-related and class-related. A type
represents a definition of some set of phenomena with similar behavior. A
class is a description of a group of phenomena with similar properties. A
class represents a particular implementation of a type. The same hierarchical
abstraction mechanisms found in semantic data models are also found here.
Inheritance is indicated as a generalization of the generalization-mechanism.
Classes or types bound by this kind of relationship share attributes and op-
erations. Inheritance can be either single — where a class or type can have no

46 2. Conceptual Modeling Languages

Type \ Aggregation

Relationship Association

Structural
Single
\ / 9 ddition
Class Inheritance \ Redefinition

Multiple £Z&—" Restriction

Interface/Body
Metaclass
Attribute
/ Active instance
Object Concurrency
model Rules \ o
Passive instance

construct:

Creation
nstance State<
Llfetlme< Destruction
Persistence

Static
Interface/Body / Dynamic
) 00 specific <
Behavioral / Polymorphic
ingle \

/S G | Sync/asynch
xternal \ eneral
Sequences Broadcast

Event Local/remote

Operations
Internal <
FSM event sequences

Fig. 2.22. General object model (From [396])

more than one parent, or multiple — where a class or type can have more than
one parent. Inheritance in a class hierarchy can exhibit more features than
that of a type hierarchy. Class inheritance may exhibit addition — where the
subclass merely adds some extra properties (attributes and methods) over
what is inherited from its superclass(es). Class inheritance can also involve
redefinition — where some of the inherited properties are redefined. Class in-
heritance may also exhibit restriction — where only some properties of the
superclass are inherited by the subclass. Inheritance is described in more
detail in [362].

A metaclassis a higher-order class, responsible for describing other classes.

Rules within object-oriented modeling language are basically static rules.

Behavioral phenomena describe the dynamics of a system. Dynamic phe-
nomena relates to instances of classes and the events or messages which pass
between such instances. An instance has a definite lifetime from when it is
created to when it is destroyed. In between these two events, an instance may
spend time in a number of interim states. If the lifetime of an instance can
exceed the lifetime of the application or process that created it, the instance
is said to be persistent. Instances can execute in parallel (active) or serially

2.2 Overview of Languages for Conceptual Modeling 47

(passive) with others. Events are stimuli within instances. An external event
is an event received by an instance. An internal event is an event generated
internally within an instance which may cause a state change (through an
FSM) or other action (defined by an internal operation) to be taken within the
instance. Such actions may involve generating messages to be sent to other
instances whereby a sequence of events (or messages) may ensue. Various
mechanisms may be used to deliver a message to its destination, depending
on the capabilities of the implementation language. For example, a message
may employ static binding - where the destination is known at application
compile time. Conversely, a message may employ dynamic binding, where
the message destination cannot be resolved until application run-time. In
this case, message-sending polymorphism may result, where the same mes-
sage may be sent to more than one type (class) of instances. Messages may be
categorized as either asynchronous where the message is sent from origina-
tor to receiver and the originator continues processing, or synchronous where
the thread of control passes from the originating instance to the receiving in-
stance. Messages may also be sent in broadcast mode where there are multiple
destinations. Where an overall system is distributed among several processes,
messages may be either local or remote. Many of these detailed aspects are
first relevant during design of a system.

One example of the object perspective is the Object Modeling Tech-
nique(OMT).

OMT . OMT [319] have three modeling languages: the object modeling
language, the dynamic modeling language, and the functional modeling lan-
guage.

Object Modeling Language. This describes the static structure of the objects
and their relationships. It is a semantic data modeling language. The vocab-
ulary and grammar of the language are illustrated in Fig. 2.23.

— a) Illustrates a class, including attributes and operations. For attributes, it
is possible to specify both data type and an initial value. Derived attributes
can be described, and also class attributes and operations. For operations
it is possible to specify an argument list and the type of the return value.
It is also possible to specify rules regarding objects of a class, for instance
by limiting the values of an attribute.

— b) Illustrates generalization, being non-disjoint (shaded triangle) or dis-
joint. Multiple inheritance can be expressed. The dots beneath superclass2
indicates that there exist more subclasses. It is also possible to indicate
a discriminator (not shown). A discriminator is an attribute whose value
differentiates between subclasses.

— ¢) Illustrates aggregation, i.e. part-of relationship on objects.

— d) Hlustrates an instance of an object and indicates the class and the value
of attributes for the object.

— e) Illustrates instantiation of a class.

48 2. Conceptual Modeling Languages

— f) Tlustrates relationships (associations in OMT-terms) between classes.
In addition to the relationship name, it is possible to indicate a role-name
on each side, which uniquely identifies one end of a relationship. The figure
also illustrates propagation of operations. This is the automatic application
of an operation to a network of objects when the operation is applied to
some starting object.

— g) Ilustrates a qualified relationship. The qualifier is a special attribute
that reduces the effective cardinality of a relationship. One-to-many and
many-to-many relationships may be qualified. The qualifier distinguish
among the set of objects at the many end of an relationship.

— h) Tllustrates that also relationships can have attributes and operations.
This figure also shows an example of a derived relationship (through the
use of the slanted line).

— i) Illustrates cardinality constraints on relationships. Not shown in any of
the figures is the possibility to define constraints between relationships,
e.g. that one relationship is a subset of another.

— j) Hlustrates that the elements of the many-end of a relationship are or-
dered.

— k) Tllustrates the possibility of specifying n-ary relationships.

An example that illustrates the use of main parts of the languages is given
in Fig. 2.24 indicating parts of a structural model for a conference system. A
Person is related to one or more Organization through the Affiliation relation-
ship. A Person is specialized into among others Conference organizer, Referee,
Contributer, and Participant. A person can fill one or more of these roles. A
conference organizer can be either a OC (organizing committee)-member or
a PC (program committee)-member or both. A Referee is creating a Review
being an evaluation of a Paper. A PC-member is responsible for the Review,
but is not necessarily the Referee. The Review contains a set of Comments,
being of a Commenttype. Two of the possible instances of this class ”Com-
ments to the author” and ”Main contributer” is also depicted. A Review has
a set of Scores being Values on a Scale measuring different Dimensions such
as contribution, presentation, suitability to the conference and significance.

Dynamic Modeling Language. This describes the state transitions of the sys-
tem being modeled. It consist of a set of concurrent state transition diagrams.
The vocabulary and grammar of the language is illustrated in Fig. 2.25. The
standard state transition diagram functionality is illustrated in Fig. 2.25a)
and partly Fig. 2.25 b), but this figure also illustrates the possibility of cap-
turing events that do not result in a state transition. This also includes entry
and exit events for states. Fig. 2.25¢) illustrates an event on event situation,
whereas Fig. 2.25d) illustrates sending this event to objects of another class.
Fig. 2.25¢), Fig. 2.25f), and Fig. 2.25g) shows constructs similar to those
found in Statecharts [161] to address the combinatorial explosion in tradi-
tional state transition diagrams. See Sect. 2.2.4 for a more detailed overview
of Statecharts. Not shown in the figure are so called automatic transitions.

2.2 Overview of Languages for Conceptual Modeling 49

a) Class: Class name f) Association:

attribute : data_type = init_value Class-1 Association name Class-2
Iderived_attribite

Sclass_attribute Role-1 Role-2

=
;plevat\Dn(argjlsl):vemrnjype Operation
class-operston g) Qualified association:
constraint] Association name
feonsang
Role-1 Role-2

b) Generalization(Inheritance):
h) Association as class(derived association):

[Superclassi | [superclass2| Class—1 7 Class-2

I

‘Association name

Link attribute

[subclass-1 | [subclass-2 | Link operation

c) Aggregation: i) Cardinality:

Assemblyclass

Exactly one

!

Class Many (zero or more)

. Optional (zero or more)
1+

Class One or more

Class Numerically specified

Part-1-class Part-2-class

|

d) Object instances: ’) ordered
j) Ordering: { } Class

i

(Class Name)

atribute_name = value k) Ternary association:
Association name

- Class-1 Class-2
e) Instantiation: : Role-1 Role-2

z
5

Role-3
G

Fig. 2.23. Symbols in the OMT object modeling language

Frequently, the only purpose of a state is in this language to perform a se-
quential activity. When the activity is completed a transition to another state
fires. This procedural way of using a state transition diagram is somewhat
different from the traditional use.

Functional Modeling Language. This describes the transformations of data
values within a system. It is described using data flow diagrams. The nota-
tion used is similar to traditional DFD as illustrated in Sect. 2.2.3, with the
exception of the possibility of sending control flows between processes, being
signals only. External agents corresponds to objects as sources or sinks of
data.

A host of other object-oriented modeling languages have appeared in the
literature in the late eighties and the nineties, e.g. [18, 35, 67, 68, 106, 148,
184, 197, 312, 318, 337, 401].

Overviews and comparisons of different approaches can be found in [106,
178, 396]. According to Slonim [346] OO methodologies for analysis and
design are a mess. There are over 150 contenders out there with no clear
leader of the pack. Each methodology boast their own theory, their own ter-

50 2. Conceptual Modeling Languages

Person

firstname:string(n) Affiliation S
initials:string(n) 1+ 1+ Organization
laeiname:srng() Tamesting
Fag(nsta.lsnlgiwng)(n) address:string(n)
Email:string(n) country:string(n)
URL:string(n)

Password:string(n)

A

Conference - i
organizers Referee Contributer Participant
1+
4— "
PC-member
OC-member stri 9 Author
reviewformat:string(n) Contact
1+
N Evaluation ¥
Comment Review i Paper
comment _t+|____Revew tille'slring(rg
contents:string(n) weight:integer=1 reference: integer
received:date received:date
1+ 1+ filename:string(n)
wordcount:integer
Classification
Paperstate
Commenttype - Yalue Dimension name: string(n)
et name: string(n) name:string(n)
name:string(n) numericvalue: integer comment:string(n) lststate:set of string
1+ 1+
(Commenttype) Measure
name ="Comments to
the author”
Scale
NN name:string(n)
Quantification

weight:integer=1

Fig. 2.24. Example of an OMT object model

minology, and their own diagramming techniques.” With the recent teaming
of Rumbaugh, Booch, and Jacobson on the development of UML (Unified
Modeling Language) this situation might improve in the future.

We will return to other specific aspects of object-oriented modeling in
Sect. 2.2.8 on the actor and role perspective.

2.2.7 The Communication Perspective

Much of the work within this perspective is based on language/action the-
ory from philosophical linguistics. The basic assumption of language/action
theory is that persons cooperate within work processes through their conver-
sations and through mutual commitments taken within them. Speech act
theory, which has mainly been developed by Austin and Searle [15, 327, 328]

2.2 Overview of Languages for Conceptual Modeling 51

event(attribute)[guard]/action
a) State transition State-1 State-2

Initial
state

b) Initial and final state

eventl/event2

c) Output event on transition State-1 State-2

d) Sending event to another object State-1 State-2

(e G

event2

e) State generalization f) Concurrent states

eventl Superstate

Substate4
l/ event3

g) Splitting and synchronization of control event2

Superstate

eventl

Substatel

0

event3
event0

event4

Substate4

U

event2

Fig. 2.25. Symbols in the OMT dynamic modeling language

starts from the assumption that the minimal unit of human communication
is not a sentence or other expression, but rather the performance of certain
kinds of language acts. Illocutionary logic [94, 329] is a logical formalization
of the theory and can be used to formally describe the communication struc-
ture. The main parts of illocutionary logic is the illocutionary act consisting
of three parts, illocutionary context, illocutionary force, and propositional
context.

The context of an illocutionary act consist of five elements: Speaker (S),
hearer (H), time, location, and circumstances.

The illocutionary force determines the reasons and the goal of the com-
munication. The central element of the illocutionary force is the illocutionary
point, and the other elements depend on this. Five illocutionary points are
distinguished [328]:

52 2. Conceptual Modeling Languages

— Assertives: Commit S to the truth of the expressed proposition (e.g. It is
raining).

— Directives: Attempts by S to get H to do something (e.g. Close the window).

— Commissives: Commit S to some future course of action (e.g. I will be
there).

— Declaratives: The successful performance guarantees the correspondence
between the proposition p and the world (e.g. The ball is out).

— Expressives: Express the psychological state about a state of affairs speci-
fied in the proposition. (e.g. Congratulations!).

This distinctions is directly related to the ‘direction of fit’ of speech acts.
We can distinguish four directions of fit.

1. Word-to-world: The propositional content of the speech act has to fit
with an existing state of affairs in the world. (assertive)

2. World-to-word: The world is altered to fit the propositional content of
the speech act. (directive and commissive)

3. Double direction fit: The world is altered by uttering the speech act to
conform to the propositional content of the speech act. (declaratives)

4. Empty direction of fit: There is no relation between the propositional
content of the speech act and the world. (expressives).

In addition to the illocutionary point, the illocutionary force contains six
elements:

— Degree of strength of the illocutionary point: Indicates the strength of the
direction of fit.

— Mode of achievement: Indicates that some conditions must hold for the
illocutionary act to be performed in that way.

— Propositional content conditions: E.g. if a speaker makes a promise, the
propositional content must be that the speaker will cause some condition
to be true in the future.

— Preparatory condition: There are basically two types of preparatory con-
ditions, those dependant on the illocutionary point and those dependant
on the propositional content.

— Sincerity conditions: Every illocutionary act expresses a certain psycholog-
ical state. If the propositional content of the speech act conforms with the
psychological state of the speaker, we say that the illocutionary force is
sincere.

— Degree of strength of sincerity condition: Often related to the degree of
strength of the illocutionary point.

Speech acts are elements within larger conversational structures which define
the possible courses of action within a conversation between two actors. One
class of conversational structures are what Winograd and Flores [400] calls
‘conversation for action’. Graphs similar to state transition diagrams have
been used to plot the basic course of such a conversation (see Fig. 2.26). The

2.2 Overview of Languages for Conceptual Modeling 53

conversation start with that part A comes with a request (a directive) going
from state 1 to state 2. Part B might then promise to fulfill this request per-
forming a commissive act, sending the conversation to state 3. Alternatively ,
B might the decline the request, sending the conversation to the end-state 8,
or counter the request with an alternative request, sending the conversation
into state 6. In a normal conversation, when in state 3, B reports completion,
performing an assertive act, the conversation is sent to state 4. If A accept
this, performing the appropriate declarative act, the conversation is ended in
state 5. Alternatively, the conversation is returned to state 3.

A:Decline report

. B:Report A: Declare
@ A:Request @ B:Promise @ completion @ complete @

B:Cancel

B:Decline A:Accept

A:Cancel

A:Cancel A:Cancel

B:Cancel
A:Cancel

Fig. 2.26. Conversation for action (From [400])

This is only one form of conversation. Several others are distinguished,
including conversations for clarification, possibilities, and orientation.

This application of speech act-theory forms the basis for several computer
systems, the best known being the Coordinator [118].

Speech act theory is often labeled as a 'meaning in use theory’ together
with the philosophy of the later Wittgenstein. Both associate the meaning of
an expression with how it is used. However, it is also important to see the
differences between the two. Searle associated meaning with a limited set of
rules for how an expression should be used to perform certain actions. With
this as a basis, he created a taxonomy of different types of speech acts. For
Wittgenstein, on the other hand, meaning is related to the whole context of
use and not only a limited set of rules. It can never be fully described in a
theory or by means of systematic philosophy

Speech act theory is also the basis for modeling of work-flow as coordina-
tion among people in Action Workflow [260]. The basic structure is shown in
Fig. 2.27.

Two major roles, customer and supplier, are modeled. Work-flow is de-
fined as coordination between actors having these roles, and is represented
by a conversation pattern with four phases. In the first phase the customer
makes a request for work, or the supplier makes an offer to the customer.

54 2. Conceptual Modeling Languages

Request or Negotiation
offer

Conditions for .
Customer customer satisfaction Supplier

Accept Execution

Fig. 2.27. Main phases of action workflow

In the second phase, the customer and supplier aims at reaching a mutual
agreement about what is to be accomplished. This is reflected in the contract
conditions of satisfaction. In the third phase, after the performer has per-
formed what has been agreed upon and completed the work, completion is
declared for the customer. In the fourth and final phase the customer assess
the work according to the conditions of satisfaction and declares satisfaction
or dissatisfaction. The ultimate goal of the loop is customer satisfaction. This
implies that the work-flow loop have to be closed. It is possible to decompose
steps into other loops. The specific activities carried out in order to meet the
contract are not modeled. The four phases in Fig. 2.27 corresponds to the
"normal path” 1-5 in Fig. 2.26.

Some newer approaches to workflow modeling include aspects of both the
functional (see Sect. 2.2.3) and language action modeling. In WooRKS [2]
functional modeling is used for processes and LA for exceptions thus not using
these perspectives in combination. TeamWare Flow [361] and Obligations [33]
on the other hand can be said to be hybrid approaches, but using radically
different ontologies from those found in traditional conceptual modeling.

Habermas took Searle’s theory as a starting point for his theory of commu-
nicative action [154]. Central to Habermas is the distinction between strategic
and communicative action. When involved in strategic action, the partici-
pants strive after their own private goals. When they cooperate, they are
only motivated empirically to do so: they try to maximize their own profit
or minimize their own losses. When involved in communicative action, the
participants are oriented towards mutual agreement. The motivation for co-
operation is thus rational. In any speech act the speaker S raises three claims:
a claim to truth, a claim to justice, and a claim to sincerity. The claim to
truth refers to the object world, the claim to justice refers to the social world
of the participants, and the claim to sincerity refers to the subjective world
of the speaker. This leads to a different classification of speech acts [92]:

— Imperativa: S aims at a change of the state in the objective world and
attempts to let H act in such a way that this change is brought about.
The dominant claim is the power claim. Example; “ I want you to stop
smoking”

— Constativa: S asserts something about the state of affairs in the objective
world. The dominate claim is the claim to truth. Example: “It is raining”

2.2 Overview of Languages for Conceptual Modeling 55

— Regulative: S refers to a common social world, in such a way that he tries
to establish an interpersonal relation which is considered to be legitimate.
The dominant claim is the claim to justice. Example: “Close the window”,
“I promise to do it tomorrow”.

— Expressiva: S refers to his subjective world in such a way that he discloses
publicly a lived experience: The dominant claim is the claim to sincerity.
Example: “Congratulations” .

A comparisons between Habermas’ and Searle’s classifications is given in
Fig. 2.28.

Searle

) . - . . Dominant
Assertives| Directives | Commisives | Expressives Declaratives claim
Habermas

Claim to
Imperativa power

Claim to
Constativa % truth

Claim to
Regulativa justice

)

Claim to
Expressiva i sincerity
¥

Fig. 2.28. Comparing communicative action in Habermas and Searle (From [92])

In addition to the approach to workflow-modeling described above, sev-
eral other approaches to conceptual modeling are inspired by the theories
of Habermas and Searle such as COMMODIOUS [172], SAMPO [14], and
ABC/DEMO. We will describe one of these here, ABC.

ABC-diagrams. Dietz [91] differentiate between two kinds of conversations:

— Actagenic, where the result of the conversation is the creation of something
to be done (agendum), consisting of a directive and a commissive speech
act.

— Factagenic, which are conversations which are aimed at the creation of
facts typically consisting of an assertive and a declarative act.

Actagenic and factagenic conversations are both called performative conver-
sations. Opposed to these are informative conversations where the outcome
is a production of already created data. This includes the deduction of data
using e.g. derivation rules.

A transaction is a sequence of three steps (see Fig. 2.29): Carrying out
an actagenic conversation, executing an essential action, and carrying out a
factagenic conversation. In the actagenic conversation initiated by subject A,

56 2. Conceptual Modeling Languages

Subject Subject Subject Subject
A B B A
|| I
I I I I time
actagenic essential factagenic
conversation action conversation
Transaction

Fig. 2.29. The pattern of transaction

the plan or agreement for the execution of the essential action by subject B
is achieved. The actagenic conversation is successful if B commits himself to
execute the essential action. The result then is an agendum for B.

An agendum is a pair < a,p > where a is the action to be executed and
p the period in which this execution has to take place.

In the factagenic conversation, the result of the execution are stated by
the supplier. It is successful if the customer accepts these results. Note the
similarities between this and the workflow-loop in action workflow.

In order to concentrate on the functions performed by the subjects while
abstracting from the particular subjects that perform a function, the notion
of actor is introduced. An actor is defined by the set of actions and commu-
nications it is able to perform.

The actor that initiates the actagenic conversation and consequently ter-
minate the factagenic one of transactions of type T, is called the initiator of
transaction type T. Subject B in Fig. 2.29 is called the executor of transaction
T.

An actor that is element of the composition of the subject system is
called an internal actor, whereas an actor that belongs to the environment is
called an external actor. Transaction types of which the initiator as well as
the executor is an internal actor is called an internal transaction. If both are
external, the transaction is called external. If only one of the actors is external
it is called an interface transaction type. Interaction between two actors takes
place if one of them is the initiator and the other one is the executor of the
same transaction type. Interstriction takes place when already created data
or status-values of current transactions are taken into account in carrying
out a transaction.

In order to represent interaction and interstriction between the actors of
a system, Dietz introduce ABC-diagrams. The graphical elements in this lan-
guage are shown in Fig. 2.30. An actor is represented by a box, identified by

2.2 Overview of Languages for Conceptual Modeling 57

@

external

actor channel channe}vitﬁl'i bank
corresponding
A Tj bank Ex
R ——— -
generate link execute link inspect link
(g-link) (e-link) (i-link)

Fig. 2.30. The symbols of the ABC-language (From [91])

a number. A transaction type is represented by a disk. The operational inter-
pretation of a disk is a store for the statuses through which the transaction
of that type pass in the course of time. The disk symbol is called a channel.
The diamond symbol is called a bank, and contain the data created through
the transaction. The actor who is the initiator of a transaction type is con-
nected to the transaction channel by a generate link (g-link) symbolized by a
plain link. The actor who is the executor is connected to the transaction by
an execute link (e-link). Informative conversations are represented by inspect
links (i-links), symbolized by dashed lines.

In [376], it is in addition illustrated how to show the sequence of trans-
actions in a transaction sequence graph. It is also developed a transaction
process model which is an extension of the model presented in Fig. 2.26
including an indication of the dominant claim of the conversation that is
potentially countered.

2.2.8 The Actor and Role Perspective

The main phenomena of languages within these perspective are actor (alter-
natively agent) and role. The background for modeling of the kind described
here comes both from work on (object-oriented) programming languages (e.g
actor-languages [371]), and work on intelligent agents in artificial intelligence
(e.g [133, 339]).

ALBERT (Agent-oriented Language for Building and Eliciting Real-Time
requirements) [98, 99] have a set of specification language for modeling com-
plex real-time cooperative distributed systems which are based on describing
a system as a society of agents, each of them with their own responsibilities
with respect to the actions happening in the system and its time-varying
perception of the behavior of the other agents. A variety of requirements
can be described with ALBERT, such as structural, temporal, functional,
behavioral, in addition to real-time and cooperative aspects which are cov-
ered through the modeling of distributed systems in terms of agents, each

58 2. Conceptual Modeling Languages

of them characterized with time-varying communication possibilities. Com-
munication mechanisms allow to describe how an agent perceive data made
available to it by other agents and show parts of its data to other agents. We
will here concentrate on the agent modeling aspect of ALBERT.

Agents, as defined in ALBERT, may be seen as a specialization of objects.
Models are made at two levels.

— Agent level: A set of possible behaviors are associated with each agent
without any regard to the behavior of other agents

— Society level: Interactions between agents are taken into account and lead
to additional restrictions on the behavior of each individual agent.

The formal language is based on a variant of temporal logic extended with
actions, agents, and typical patterns of constraints. The declaration of agents
consist in the description of the state structure and the list of the actions its
history can be made of. The state is defined by its components which can
be individuals collections of individuals. Components can be time-varying or
constant. Agents include a key mechanism that allows the identification of
the different instances. A type is automatically associated to each class of
agents. Figure 2.31 shows the model associated with the declaration of the
state structure of a cell (a part of a CIM production system).

Sets and instances are depicted as small rectangles with rectangles in-
side indicating the type (e.g. Out-full of type BOOLEAN, or Input-stock of
type RIVET). Actions are depicted as small rectangles with ovals inside (e.g.
Remove-bolt). Actions might have arguments (e.g. BOLT of Remove-bolt).
A wavy line between components expresses that the value of a component
may be derived from others (e.g. Output-stock from Out-full). It is possible
to distinguish between internal and external action and to express the vis-
ibility relationships linking the agent to the environment. The components
within the parallelogram is under the control of the described agent while
information outside denotes elements which are imported from other agents
of the society the agent belongs to. Boxes within the parallelogram with an
arrow going out from them denote that data is exported to the outside (e.g.
Output-stock to Manager).

Agents are grouped into societies, which themselves can be grouped into
other societies. The existing hierarchy of agents are expressed in term of two
combinations: Cartesian product and set. Constraints are used for pruning the
infinite set of possible lives of an agent. These are divided into ten headings
and three families to provide methodological guidance. The families are:

— Basic constraints: Used to describe the initial state of an agent, and to give
the derivation rules for derived components.

— Local constraints: Related to the internal behavior of the agent.

— Cooperative constraints: Specifies how the agent interacts with its environ-
ment.

2.2 Overview of Languages for Conceptual Modeling 59

Manager Manager Manager
Produce Remove-bolt Store-rivet
BC!LT RIVET
Manager
M,

T
o,

Output-stock Out-full

Input-stock

Remove-rivet Store-bolt

= e

RIVET

BOLT

Fig. 2.31. Example of an ALBERT model (From [99])

Organizational modeling: Yu and Mylopoulos [406, 407] have proposed a
set of integrated languages to be used for organizational modeling:

— The Actor Dependency modeling language.
— The Agents-Roles-Positions modeling language.
— The Issue-Argumentation modeling language.

The Issue-Argumentation modeling language is an application of a subset of
the non-functional framework presented in Sect. 2.2.5. The two other model-
ing languages are presented below.

In actor dependency models each node represent a social actor/role. Fig-
ure 2.32 gives an example of such a model depicting the goods acquisition of
a company. The actors/roles here are purchasing, client, receiving, vendor,
and accounts payable. Each link between the nodes indicates that a social
actor depends on the other to achieve a goal. The depending actor is called
the depender, and the actor that is depended upon is called the dependee.
The object assigned to each link is called a dependum. It is distinguished
between four types of dependencies:

— Goal dependency: The depender depends on the dependee to bring about
a certain situation. The dependee is expected to make whatever decisions
are necessary to achieve the goal. In the example, the client just wants
to have the item, but does not care how the purchasing specialist obtains
price quotes, or which supplier he orders from. Purchasing, in turn, just
wants the vendor to have the item delivered, but does not care what mode
of transportation is used etc.

60 2. Conceptual Modeling Languages

— Task dependency: The depender depends on the dependee to carry out
an activity. A task dependency specifies how, and not why the task is
performed. In the example, purchasing’s dependency on receiving is a task
dependancy because purchasing relies on receiving to follow procedures
such as: Accept only if the item was ordered. Similarly, the client wants
accounts payable to pay only if the item was ordered and has been received.

— Resource dependency: The depender depends on the dependee for the avail-
ability of some resources (material or data). Accounting’s dependencies for
information from purchasing, receiving, and the vendor before it can issue
payment are examples of resource dependencies.

— Soft-goal dependencies: Similar to a goal dependency, except that the con-
dition to be attained is not accurately defined. For example, if the client
wants the item promptly, the meaning of promptly needs to be further
specified.

The language allows dependencies of different strength: Open, Committed,
and Critical. An activity description, with attributes as input and output,
sub-activities and pre and post-conditions expresses the rules of the situation.
In addition to this, goal attributes are added to activities. Several activities
might match a goal, thus subgoals are allowed.

2.2 Overview of Languages for Conceptual Modeling 61

client

has(item)
payfor
(item)

promptly
[has(item)] item

purinfo
(item)
receive
(

item)
receiv— accounts
recStatus payable

(item)

pur-
chaseing "9

purinfo
(item)

invoice
(item)

delivered |
(item)

paid
(item)

LEGEND X

Depender Dependee

TAsk dependecy Actor
Resource dependency X Critical
(@] Open

Goal dependency

Soft-goal dependency

qoile

Fig. 2.32. Example of an actor dependency model (From [407])

(o))

2 2. Conceptual Modeling Languages

Nodes Association links

occupies
covers ‘

role
plays
has subrole @

agent

DO OO
OO

N

@ interdependency @

Position coverage P RN
~ -

Fig. 2.33. Symbols in agents-role-position modeling language (From [406])

The Agents-Roles-Positions modeling language consists of a set nodes and
links as illustrated in Fig. 2.33. An actor is here as above used to refer to
any unit to which intentional dependencies can be ascribed. The term social
actor is used to emphasize that the actor is made up of a complex network of
associated agents, roles, and positions. A role is an abstract characterization
of the behavior of a social actor within some specialized context or domain. A
position is an abstract place-holder that mediates between agents and roles.
It is a collection of roles that are to be played by the same agent. An agent
refers to those aspects of a social actor that are closely tied to its being a
concrete, physically embodied individual.

Agents, roles, and positions are associated to each other via links: An
agent (e.g. John Krogstie) can occupy a position (e.g. program coordinator)
, a position is said to cover a role (e.g. program coordinator covers delegation
of papers to reviewers), and an agent is said to play a role. In general these
associations may be many-to-many. An interdependency is a less detailed way
of indicating the dependency between two actors. Each of the three kinds of
actors- agents, roles, and positions, can have sub-parts.

OORASS - Object oriented role analysis, synthesis and structuring.
OORASS [312] is really a pure object-oriented method, but we have chosen
to present it here since what is special to OORASS is the modeling of roles.

A role model is a model of object interaction described by means of mes-
sage passing between roles. It focuses on describing patterns of interaction
without connecting the interaction to particular objects.

2.2 Overview of Languages for Conceptual Modeling 63

Role A ° @ Role B

Fig. 2.34. Symbols in the OORASS role interaction language

The main parts of a role model is described in Fig. 2.34. A role is de-
fined as the why-abstraction. Why is an object included in the structure of
collaborating objects? What is its position in the organization, what are the
responsibilities and duties? All objects having the same position in the struc-
ture of objects play the same role. A role only has meaning as a part of some
structure. This makes the role different from objects which are entities ex-
isting “in their own right”. An object has identity and is thus unique, a role
may be played by any number of objects (of any type). An object is also able
to play many different roles. In the figure there are two roles A and B. A path
between two roles means that a role may ’know about’ the other role so that
it can send messages to it. A path is terminated by a port symbol at both
ends. A port symbol may be a single small circle, a double circle, or nothing.
Nothing means that the near role do not know about the far role. A single
circle (p) indicates that an instance of the near role (A) knows about none or
one instance of the far role (B). A double circle (q) indicates that an instance
of the near role knows about none, one or more instances of the far role. In
the figure 'p’ is a reference to some object playing the role B. Which object
this is may change during the lifetime of A. If some object is present, we are
always assured that it is capable of playing the role B. For a port, one can
define an associated set of operations called a contract. These operations are
the ones that the near role requires from the far role, not what the near role
implements. The signatures offered must be deduced from what is required
in the other end.

Role models may be viewed through different views.

— Environment view: The observer can observe the system interact with its
environment,.

— External view: The observer can observe the messages flowing between the
roles.

— Internal view: The observer can observe the implementation

Other views are given in OORASS using additional languages with structural,
functional, and behavioral perspectives.

64 2. Conceptual Modeling Languages
2.3 Applying Several Modeling Perspectives

We have above presented different perspectives towards conceptual modeling.
Based on social construction theory, the general features of the world can
not be said to exist a priori. According to this belief one might wish to
go to the other extreme — an approach without any presumptions at all.
However, this is impossible. Any methodology and any language implies some
presumptions. Thus, having an approach totally free of presumptions would
mean to have no approach at all, inventing a new one fit for the specific
problem for every new development and maintenance task. For philosophers
this might be acceptable, but engineers are expected to adapt to certain
demands for efficiency. Inventing a new approach for every development and
maintenance effort would not give us that efficiency, neither is it likely that it
will give better CIS-support for the organization. Developing and maintaining
a CIS without any fixed ideas about how it should be done would be tedious
and unsystematic — as stated by Boehm [32], the ad hoc methods used in
the earliest days of software development were much worse than those used
today. So clearly one needs to make some presumptions, one need to have
some fixed ideas. What is necessary is to find a point of balance — making
enough presumptions for the approach to be systematic and efficient, but
not so many that its flexibility and applicability is severely reduced. We can
become aware of some of our presumptions, and in that way emancipate
ourselves from some of the limits they place on our thinking, but we can
never free us from all presumptions.

As we have illustrated in this chapter, there are a number of different
approaches to conceptual modeling, each emphasizing different aspects of
the perceived reality. Several researchers have claimed that one perspective
is better, or more natural, than others:

— Sowa [352] bases his language for conceptual graphs on work on human
perception and thinking done in cognitive psychology, and uses this to
motivate the use of the language. It seems safe to say that even with his
convincing discussion, conceptual graphs have had a very limited influence
on conceptual modeling practices and the development and maintenance of
CISs in most organizations, even if its has received much attention within
computer science research®.

— In the last years, many authors have advocated object-oriented modeling
partly based on the claim that it is a more natural way to perceive the
world [244, 396]. The view that object-orientation is a suitable perspective
for all situations have been criticized by many in the last couple of years;
see e.g. [43, 173, 183]. The report on the First International Symposium
on Requirements Engineering [183] said it so strongly that “requirements
are not object-oriented. Panelist reported that users do not find it natural
to express their requirements in object-oriented fashion”. Even if there

® The third international conference on the topic was held in August 1995.

2.3 Applying Several Modeling Perspectives 65

are cases where a purely object-oriented perspective is beneficial, it does
not seem to be an appropriate way of describing all sorts of problems,
as discussed in [173]. Newer approaches to OOA claim to attack some of
these problem, see e.g. [106]. In any case, as stated by Meyer [262], ” Object
technology is not about modeling the real world. Object technology is about
producing quality software, and the way to obtain this is to devise the right
abstractions, whether or not they model what someone sees as the reality”.

— In Tempora [366], rules were originally given a similar role in that it was
claimed that “end users perceive large parts of a business in terms of poli-
cies or rules”. This is a truth with modification. Even if people may act
according to rules, they are not necessarily looking upon it as they are as
discussed by Stamper [354]. Rule-based approaches also have to deal with
several deficiencies, as discussed earlier in the chapter.

— Much of the existing work on conceptual modeling that has been based on
a constructivistic world-view has suggested language/action modeling as a
possible cornerstone of conceptual modeling [142, 203, 400], claiming that
it is more suitable than traditional “objectivistic” conceptual modeling.
On the other hand, the use of this perspective has also been criticized, also
from people sharing a basic constructivistic outlook. An overview of the
critique is given in [83]:

— Speech act theory is wrong in that it assumes a one-to-one mapping
between utterances and illocutionary acts, which is not recognizable in
real life conversations.

— The normative use of the illocutionary force of utterances is the ba-
sis for developing tools for the discipline and control over organizations
member’s actions and not supporting cooperative work among equals.

— The language/action perspective does not recognize that embedded in
any conversation is a process of negotiating the agreement of meaning.

— The language/action perspective misses the locality and situatedness of
conversations, because it proposes a set of fixed models of conversations
for any group without supporting its ability to design its own conversa-
tion models.

— The language/action perspective offers only a partial insight; it has to
be integrated with other theories.

— As discussed earlier in this chapter, also functionally and structurally ori-
ented approaches have been criticized in the literature [46, 287].

Although the use of a single perspective has been criticized, this does not
mean that modeling according to a perspective should be abandoned, as long
as we do not limit ourselves to one single perspective. A model expressed in
a given language emphasize a specific way of ordering and abstracting ones
internal reality. One model in a given language will thus seldom be sufficient.
With this in mind more and more approaches are based on the combination of
several modeling languages. There are at least four general ways of attacking
this:

66 2. Conceptual Modeling Languages

1. Use existing single-perspective languages as they are defined, without
trying to integrate them further. This is the approach followed in many
existing CASE-tools.

2. Refine common approaches to make a set of formally integrated, but still
partly independent set of languages.

3. Develop a set of entirely new integrated conceptual modeling languages.

4. Create frameworks that can be used for creating the modeling languages
that are deemed necessary in any given situation.

A consequence of a combined approach is that it requires much better tool
support to be practical. Due to the increased possibilities of consistency
checking and traceability across models, in addition to better possibilities
for the conceptual models to serve as input for code-generation, and to sup-
port validation techniques such as execution, explanation generation, and
animation the second of these approaches has been receiving increased inter-
est, especially in the academic world. Basing integrated modeling languages
on well-known modeling languages also have advantages with respect to per-
ceptibility, and because of the existing practical experience with these lan-
guages. Also many examples of the third solution exist, e.g. ARIES [190] and
DAIDA [187], and of the fourth e.g. [279, 288] together with work on so-called
meta-CASE systems e.g. [249, 378]. Work based on language-modeling might
also be used to improve the applicability of approaches of all the other types.

In the next section, we will present a comparison of the expressiveness of a
set of conceptual modeling languages. Then, in the last section of this chapter
we will present an approach to modeling that can be used according to all the
above mentioned perspectives. The approach is called PPP and is developed
at the information system group at IDI, NTNU. We will throughout the book
return to this approach for exemplifying different techniques for conceptual
modeling. In this chapter, we only present the language aspects.

2.4 On the Expressiveness of CMLs

What constitutes a good modeling language will be discussed in more detail in
Sect. 3.11. In this section, we will concentrate on the expressiveness of CMLs,
and review some analysis on this subject. We have in generally retained the
terminology of the different approaches, thus terms are partly used differently
here than as defined in Appendix D.

In the mid 1980’s, there was considerable interest in analyzing and com-
paring different modeling languages and methodologies, as exemplified by
the IFIP conferences [285] and [283]. The analyses have all been aimed at
increasing the understanding of conceptual modeling, and of the expressive-
ness needed by CMLs. In addition, the works we refer to here other specific
motivations:

2.4 On the Expressiveness of CMLs 67

— Wand and Weber have developed an ontological model of information sys-
tems (e.g. [387, 388]), which they exploit for evaluation of the expressive-
ness of CMLs.

— IFIP working group 8.1 has developed a methodology framework from
which components may be selected to define new languages and method-
ologies [284].

— Several projects have been aiming at developing multi-language environ-
ments to let developers choose languages according to the problem or to
personal preferences. Common to such systems is the use of a highly expres-
sive internal language serving as a bridge in the translations between differ-
ent external languages. Examples presented here, are AMADEUS [28, 72],
GDR [245], and ARIES [190]. Note that such systems are developed from
the recognition that different languages are often very similar in the mean-
ing of the constructs offered.

— Hull and King present a unified data model for a survey of semantic data
models in [175].

The last three involve development of what we may call unified languages.
The approach we will take in the following is to represent the essential parts
of the works listed above in meta-models, using the language depicted in
Fig. 2.35. Although we only focus on the major constructs, the meta-models
will serve as a basis for comparison of the different results, and give us useful
knowledge about the needed constructs of CMLs.

) - e =

Language Relationship Relationship isa —relationship property x of
construct 11 1:N typey

Fig. 2.35. A data modeling language used for meta-modeling

2.4.1 The Ontological Model of Information Systems

The ontological model has its origin in general systems theory. As an infor-
mation system indeed is a system, it is assumed that systems theory can
be used for analysis and design of information systems in particular. The
term ’ontological’ indicates that the model is concerned only with essential
aspects of systems, those which convey their deep structures. An information
system is considered to be a model of a real world system, and its goodness
is measured by the extent it represents the meaning of the real world system.
Deep structures are seen as opposed to surface structures, which describe the
system appearance for and interaction with its users, and the physical struc-
tures which deal with technological aspects and implementation. The major
constructs of the ontological model are depicted in Fig. 2.36.

68 2. Conceptual Modeling Languages

i subsystem

Environ— System
causes ment
* consists_of
External is_ int
i maps_into
event \ changes> ggscrlbed_ ps_
state_of
— : Value&
Event Thing Property Time
Internal / composed_of I:, T u
event
. restricts_ interact_ consists_of
l corresponds_with lawful_states| with
Trans— .
; State law Kind
formation ['responds_on_unstable_state

Fig. 2.36. A metamodel of Wand and Weber’s ontology

The most central phenomena in the ontological model are thing, property,
state, and transformation. From these, all other constructs can be derived.
Things are what the world is made up of. Things may be composite, consisting
of other things. Things are described by properties, that map them into
values. A kind is a set of things with two or more common properties. The
state of a thing at a particular point in time is the vector of values of its
properties. A state law restricts the states of a thing to a set of states which
are deemed lawful in some sense. A system is a set of things which interact,
i.e. their states affect the states of other things in the system. A system can
be decomposed into subsystems. The environment consists of things which
interact with the things in the system, in the way that they may directly
change the state of a thing through an ezternal event. Such an event may
lead the system to an unstable state, to which transformations respond by
bringing the system back to a stable state.

The ontological model applies at all phases of system development. Mod-
els from different phases should preserve invariants for the final implemented
system to be a good representation of the initial real world system. The on-
tological model can be used to assess the ontological completeness of different
CMLs, to compare different CMLs, and its foundation in systems theory has
been exploited to analyze decompositions of systems.

2.4.2 A Methodology Framework

Olle et al. present a comprehensive methodology framework in [284]. This
framework is the result of joint work of participants in the IFIP working
group 8.1, and builds on the authors’ knowledge of a large number of existing
methodologies. As with other frameworks, this one also divides development
into phases, of which business analysis, system design and construction de-
sign are considered in depth, and focuses on the delivered components from

2.4 On the Expressiveness of CMLs 69

each phase. These should cover the three perspectives of data, process and
behavior, as well as the integration of these perspectives.

The detailed descriptions of components give normative guidelines for
what models of information systems should represent. In the following, we will
focus on business analysis and the components delivered from this phase. In
Fig. 2.37, a simplified metamodel corresponding to the framework is depicted.
The simplifications made should not exclude any essential components.

precedence consists_of

Population i
constraint involves

must BU'SII:'IESS Flow
> activity
. satisfy
involves Uses

Relationship Entity precondition precondition
described_by
refers| - condition
post— i
o condition precondition
tiribute Attribute
group
uses
must_ composed_
satisfy of
Business
Value event triggers
constraint T
precedence

Fig. 2.37. A metamodel corresponding to the methodology framework

Static aspects of a business are described by entities, relationships, at-
tributes and constraints. Entities are described by name, whereas relation-
ships are described by name, class (unary, binary, n-ary) and type (cardi-
nalities). Attributes define the state space for entities, but can also describe
relationships. Attributes may be organized into groups. Constraints are either
value constraints or population constraints. Value constraints can be unique-
ness constraints, referential constraints or general check constraints. Popula-
tion constraints involve overlap of populations of different entity types.

In the process perspective, the focus is on business activities. These can be
decomposed to a number of sub-activities, and precedence relationships exist
among activities at the same decomposition level. Activities receive flows of
information or material, and produce flows as well. They can be started if
certain preconditions hold.

The behavior perspective is covered through business events, which are
events being perceived as pertinent to the business. They have an event name,
and there may exist certain precedence relationships among them. Also, a

70 2. Conceptual Modeling Languages

precondition may need to be satisfied for an event to take place, and a post-
condition may need to be satisfied after an event has occurred.

The perspectives are integrated in the following manner: Activities and
events use entities and attributes, in the sense that they may refer and change
their states. Conditions refer to entities and attributes. Business events may
trigger activities.

receives
Function/ Data flow
Process >
generates
produces \
. updates,creates, abstraction_of
¥ [U99erS | Gestroys,accesses
Event ™ Entity
postconditioned preconditioned i
stored_in
State Data store

Fig. 2.38. The unified model in AMADEUS

2.4.3 The AMADEUS Metamodel

In the ESPRIT-project AMADEUS, an attempt was made to develop a uni-
fied metamodel for language integration. The approach taken was to analyze
a set of ten well-known and representative modeling languages, identify the
needed basic constructs in a unified metamodel, and then provide a gen-
eral representation of this model. The surveyed languages included JSD [51],
NIAM [273], SSADM [95], IE [185], SADT, and ISAC [246]. In [72], the work
is presented in some detail. Here, we only present the main result, i.e. the
unified metamodel. It has the constructs shown in Fig. 2.38.

As can be seen from the model, six main constructs are identified from
the analysis of the languages; function/process, data flow, entity, event, state
and store. Their relationships are also represented in the figure. For instance,
a process is triggered by an event, it receives and generates data flows, ma-
nipulates entities and produces new events.

A frame based representation language (UMRL) is employed to represent
the unified metamodel. The frame language has the standard frame-slot-facet
constructs, and the mappings from the unified metamodel to UMRL are as
described in the following. First, a construct in the unified metamodel is rep-
resented as a frame. No other frames are allowed. Second, a relationship in

2.4 On the Expressiveness of CMLs 71

the unified model is represented as a slot in UMRL. In addition to these slots,
slots to define part-subpart relationships, instance relationships and gener-
alization relationships are allowed. Finally, any value-facet of UMRL refers
to another frame. Other facets describe properties of slots like cardinalities,
range, conditions etc.

Using this internal representation, principles for mapping rules between
models are given, via mappings to the unified metamodel. Hence, an integra-
tion of CMLs in CASE environments is facilitated.

decomposition has_ports connects carries
Port [— & Transport

Control

| Ndport | token

token
Data token

|
tion
Packet

Fig. 2.39. The metamodel of GDR

2.4.4 The GDR Metamodel

GDR [245] is a design representation geared towards modeling of real-time
systems, and can be used as a basis for defining languages. Examples of trans-
lations from Ward’s Transformation Schema [390], from Statecharts [161],
and from state transition diagrams, to GDR are given. As was the case with
AMADEUS, GDR is based on a few simple, but powerful constructs. These
design objects are organized in a class hierarchy, as shown in Fig. 2.39. Each
class has a set of predefined attributes associated. In the following, we briefly
describe each main class.

Processes receive information on input ports and produce information to
be transmitted through output ports. Processes may either be stores, where
inputs may be stored and later produced as outputs on requests, or trans-
forms, which compute outputs from inputs. The process construct is used
to represent many phenomena, including program units, objects, states, files
etc. Attributes of processes describe decompositions, and link each process
to its ports.

Ports identify information transmitting locations of a process. Input ports
and output ports correspond to inputs and outputs of a process, while ndports

72 2. Conceptual Modeling Languages

(non-directional) identify locations which are constrained in certain ways to
other ndports. An example is when a constant relationship must be main-
tained between two pieces of information, e.g. for a constraint. All these ports
are directly connected to transports, which link them to other ports. The in-
direct port is used for sending information by address, rather than through
a single direct transport. Attributes of ports include associated process and
transport, and the type of information which can be transmitted. In addition,
output ports may transmit discrete or continuous data, while input ports may
queue up incoming data or discard data when the process is inactive.

subtypes
of I of
Instance > Type
. has
involves
inserts,deletes,))
updates’refers Relation Attribute
. . has
invariant
has
Statements |e—e Method
refers calls described_by
\ . i .
precondition inputs
Condition Event Parameters
postcondition t outputs
activates

Fig. 2.40. Excerpts of the ARIES metamodel

Transports correspond to communication channels. They connect ports
and facilitate communication between processes by merging and distributing
information on associated ports. Attributes identify the connected ports.

Tokens correspond to various types of information. Control tokens can be
used to activate passive processes, deactivate active processes, or to signal
occurrences of events. Data tokens carry information used for computations.
They are described by attributes which give their structure, basic types, and
representation. Address tokens contain a port identifier, i.e. the receiver of
the address token sent through an indirect port. Packet tokens contain an
address plus data.

The semantics of GDR is to a large extent given by Petri-nets. Roughly
speaking, tokens correspond to Petri-net tokens, ports correspond to Petri-net

2.4 On the Expressiveness of CMLs 73

places, and simple processes correspond to Petri-net transitions. A notable
exception is data tokens, which do not have a Petri-net semantics.

2.4.5 The ARIES Metamodel

In ARIES, the intention is to provide a set of modeling languages from which
developers and users can choose which one to use. The means for integra-
tion of models written in different languages is a highly expressive internal
representation. Also, different presentations, both graphical and textual, can
be defined from the internal representation, so that requirements can be pre-
sented in a readable manner. In ARIES, simulations of models are facilitated
by translation to a database programming language described by Benner
in [24].

has_subtypes
ADT — typ, Subtype has_subtypes
desbribed_
. . by
desbribed_by | must_satisfy .
' must_satisfy
Attribute Constraint
must_satisfy
v -
Aggregate Printable Grouping ADT or
subtype ref.
[
composed_of group_of inverse_of

Fig. 2.41. A general semantic data model

The most important constructs of the ARIES metamodel are depicted
in Fig. 2.40. The states of instances of types make up the system state. A
type can have multiple subtypes and multiple super-types. This means that
multiple inheritance of attributes is supported. Furthermore, an instance may
belong to more than one type at a time. Invariants are used to specify con-
straints which must hold in all states. Events are used to model dynamic
aspects. An event may have a precondition and a postcondition, and it may
receive inputs and produce outputs through parameters. An event is effected
through a method which manipulates and refers to instances. Methods use
traditional control structures (sequence, iteration and choice) to control data
manipulation through statements. An event can be activated when its precon-
dition holds, or when it is explicitly called from within a method of another

74 2. Conceptual Modeling Languages

event. Also, events may be organized into a generalization/specialization hi-
erarchy.

2.4.6 A General Semantic Data model

Hull and King present a survey of semantic data models in [175]. From this
survey one can derive a unified meta-model which covers the central con-
structs of newer semantic data models. This provides further insight in the
requirements to expressiveness for modeling state spaces of a system. How-
ever, the meta-model focuses only on this perspective. The meta-model is
given in Fig. 2.41.

The main construct is that of a abstract data type (ADT). Instances of
an ADT belong to the active domain of that ADT. An ADT may have sev-
eral subtypes (isa relationships), and instances of subtypes may be derived
through a membership formula. ADTs are characterized by attributes which
may belong to printable types, which means that their values can be output.
Attributes may also be aggregates or sets of printable types, and their values
may be derived. Relationships between ADTs are represented by attributes
as well, single or multi-valued. In such cases, it can be stated that an at-
tribute is the inverse of another. Constraints restrict states of ADTs and
their subtypes.

Although being focused on the data perspective of conceptual modeling,
this meta-model provides useful ideas not covered by the other meta-models.
In particular, the use of abstraction mechanisms like aggregations and group-
ings has been advocated in newer semantic data models.

2.4.7 A Brief Comparison

Comparing the different meta-models, we find many similarities. On the sur-
face, however, there may seem to be more differences than what is really
the case. The differences stem from various sources. One obvious reason is
different naming of similar constructs. Another reason is that sometimes, a
property of a construct in one model is made explicit as a separate con-
struct in another. Also, particular constructs may be completely lacking in
one model, but exist in another. Finally, there is naturally the possibility
that errors have been made in the metamodeling, since we in most cases have
transformed a textual description into the graphical models.

We make a simple comparison by listing corresponding constructs in the
different models, shown in Fig. 2.42. Doing this, we also highlight the three
former reasons for differences between models. We will use the ontological
model as a basis for comparison, since it contains a few, basic constructs,
and since it has already been used for the purpose of analyzing CMLs. The
constructs Environment, System, and Value& Time are omitted, since these are
not found in the other models. From the table, we see that Wand and Webers

2.5 PPP — A Multi-perspective Modeling Approach 75

ontology, the methodology framework, and AMADEUS all have separate con-
structs for the data, process, and behavior perspectives. In ARIES, the event
construct covers both processes and events. The unified semantic data model
only covers the data perspective, while GDR emphasize more on modeling of
dynamics than on modeling of data.

For representation of hierarchies in state components, the unified semantic
data model offers classification, aggregation, generalization, and association.
For representation of hierarchies among dynamic laws, all except the unified
semantic data model has a ’vague’ control structure which resemble spon-
taneous activation when preconditions hold. As an example, for a business
activity in the methodology framework to execute, a condition must hold.
In ARIES, methods include control structures from procedural programming
languages.

Of the six unified meta models, only ARIES and GDR are executable.
The others do not have the required detail level and a defined operational
semantics.

Model Kind Thing Property State law External Internal Transformation
event event
Methodology | Relationship Through | Attribute, Population | pysiness Business |Business
framework and entity type. | Kind only | attribute group, |and value | event event activity
Flow relationship constraints.
Cardinalities
AMADEUS Entity (in state), |Data store | Entity Facet of flow,| Event Event Function/
data flow (part-of rel.) entity,store Process
GDR Transport, Store, Structure ndports Token from | Token Transformer
ports token of data token source from
process
ARIES Type,relation Instance Attribute Invariants Event Event Events with
(Condition) methods, cond.,
param., statements
Semantic ADT, subtype Through | Attributes of Constraint
datamodel Kind only | different kinds

Fig. 2.42. A comparison of the unified metamodels

2.5 PPP — A Multi-perspective Modeling Approach

The languages used in the PPP approach [152, 404], extended with rule-
modeling as specified in [208, 214], constitute the current conceptual frame-
work of PPP. Four interrelated modeling languages are used.

— ONER, a semantic data modeling language.

— PPM, an extension of DFD including control flows in the SA /RT-tradition.
— The rule modeling language DRL.

— AM, the actor and role modeling language.

The integrated use of the languages is supported by an experimental
CASE-tool [405], where the repository structure is based on a meta-model

76 2. Conceptual Modeling Languages

description of the languages, and extensibility is further supported by the
use of a meta-meta-model. Modeling techniques including consistency check-
ing, model execution, explanation generation, filtering, and code-generation
to different platforms are defined and partly supported in different tools.

Below, we present the languages and their interrelationships in more de-
tail. Examples of models made in these languages will be found throughout
the rest of the book.

2.5.1 ONER — Structural and Object modeling

1) Basic constructs

E R >
Entity class Relationship class Type
11) Relationship among classes
Involvement | Involvement_
El cardinality R1 cardinality E2
Constraints:
E NONE
make up
Constraint distinct
E1l E2 partition
IIl) Types

a) primitive types

INTEGER REAL

BLOB

b) renamed type

STRING(n)

BOOLEAN

1V) Methods

method without
side effects

ot

...........

>

T

TrTL ™

method with
-, a side effect
»

Fig. 2.43. Symbols in the ONER language

O

Method

in_a_relationship

is_a_sub_of

c) set type

2.5 PPP — A Multi-perspective Modeling Approach 7

ONER is used to specify entities and relationships among entities. The sym-
bols and vocabulary and some of the grammar rule of the ONER-language
are illustrated in Fig. 2.43. To express properties of phenomena and opera-
tions on them, data types and methods are provided. Relationships can be
defined between entity classes:

— in_a_relationship: Some members in an entity class may have relationships
with members of other entity classes or with those in the same entity class.
Cardinality and involvement constraints can be modeled.

— is_a_sub_of is a subclass relationship between two entity classes. An entity
class may be a subclass of more than one class. Subclasses can make_up,
be distinct within, or be a partition of the superclass.

2.5.2 PPM - Functional, Behavioral, and Communicational
Modeling

@@ﬁ_,

process store timer external flow
agent

a) the basic components of PPP

P
. P . ~Singularflow
—T T |l—

b—» LAy repeating flow
_} Y
Triggering and Termination conditional flow

b) The properties of flows

J D ’) ==

AND port XOR port

c) three types of ports d) a process with composite pod}a flow goes into a sink

Fig. 2.44. Symbols in the PPM language

The basic modeling components of PPM are illustrated in Fig. 2.44.

— Process: An activity which transforms inputs to outputs.
— Store: A place where a collection of data or material can be kept.

78 2. Conceptual Modeling Languages

— Timer: Clocks or delays. Clocks model events that occur at a specific time.
Delays model events that are delayed a certain time interval.

— Actor: An actor may be a person, an organization, or a computerized
information system.

— Role: A role is a position filled by actors. Examples of roles are ’secretary’
and ’professor’.

— Flow: A movement of items between actors, roles, processes, stores and
timers. An item has a material aspect and a data aspect; one or both
aspects may be missing. In case both are missing, the item is a pure signal.
When a flow appears at the input or output of a process the following
properties can be specified:

— Triggering: The arrival of the triggering inputs in a legal combination
will start the process.

— Terminating: All the termination output items will be sent out before
the process changes its state to idle.

— Singular flow: Only one item will be received or sent on the flow during
an execution of the process.

— Repeating flow: More than one item can be received or sent during
execution of the process.

— Conditional flow: During an execution of the process, an item may or
may not be received or sent by the process.

In addition ports group flows showing the logical combinations of items
consumed or produced by the process when executing.

— AND port: All the members of the port are going to be received or sent
during an execution of the process.

— XOR port: One and only one member of the port is going to be received
or sent during the execution of the process.

— OR port: At least one member of the port is going to be received or sent
during the execution of the process.

This is a recursive definition, so on a process one can define composite port
structures (Fig. 2.44d). It is possible to transform any port structure to a
unique structure which is equivalent to the original port. The unique struc-
ture is of the form xor(and(Pi1, -+, Pim,), - - -,and(Py1, - - -, Pom,), where
every P;; is a flow. This is called a canonical port, which is used in connection
with consistency checking. A canonical input port(CIP) is an input port that
is canonical, and a canonical output port (COP) is an output port that is
canonical.

Usually a flow goes from one component into another one. A possible
exception is that the item in a flow will not be used i.e., the data or material
is sent into the flow, then is lost. For specifying this case one has defined the
auxiliary concept sink; all lost flows will be linked to sinks, as that shown in
Figure 2.44e.

2.5 PPP — A Multi-perspective Modeling Approach 79

A PPM is a network of processes, stores, timers, actors, and roles con-
nected by flows. Processes might be decomposed in additional PPMs. Items
can be described by a subset of the ONER-model.

Timers are of two kinds, clock and delays:

— Clocks are used to model events that are to occur at a specific moment in
time. The flows connected to a clock are of three kinds:

— On: Starts the clock. A clock may have zero, one or many on-flows.
When switched on, the clock waits a specified clock interval, issues a
clock signal, waits another clock interval, and so on until it is eventually
turned off. Several signals might enter through the same on-flow starting
new sequences, but will not remove an old one. When no on-flow is
specified, the clock is turned on when the systems is started.

— Off: Turns the clock off. The clock may have zero, one or many off-flows.
It takes a new signal on an on-flow to restart the clock again.

— Out: The clock may have one or more outputs. All items leaving a clock
will enter a process, either on a triggering or non-triggering flow. The
usual situation is that it is a signal triggering a new process execution.

— Delays are used to model events that are delayed with respect to time. A

delay has at least two flows connected to it, one on-flow and one out-flow.
These flows can be pure signal-flows or might contain data or material. In
addition, the delay may have an off-flow connected.
When an item is received on the on-flow, it will wait the specified delay,
before forwarding the item on the out-flow, if the delay is not turned of in
the meantime by the reception of a similar item on the off-flow. The delay
might have several on, out and off-flows.

In the case of a simple delay or clock-interval such as “2 days”(relative
time) or “Friday” (explicit time), this is indicated in the graphical symbol.
For most timers, this will be sufficient, but if one want a to be able to specify
more complex delays and clock intervals use of rules in a when-if-then form
is suggested. A timer might have several rules attached. Also external agents
can be described by rules in order to simulate their behavior. How to represent
most temporal relationships between processes by the use of timers is shown
in [206].

Another auxiliary concept is the flowing manner that indicates how an
item goes from a store. A flow going into a store will update the store in some
manner. The flow from a store may consume or copy the item from the store.
Copying is default, whereas a consumption is specified explicitly. In addition
to this, there has been suggested to annotate PPM-models with performance
parameters [286], but these will not be discussed in detail here.

Process Logic Description. There are developed three ways of describing
the process logic of a process in a PPM, as an I/O-matrix, as a PLD (Process
life description), or as a set of rules similarly as in Tempora.

80 2. Conceptual Modeling Languages

I/O-matrices. The relations between the input flows and the output flows of
a process is the i/o condition. This is expressed by a matrix in which each
column corresponds to an input and each row corresponds to an output. All
rows for one output express the necessary condition for producing the output.

If an output has no row in the matrix, then it is produced unconditionally,
i.e., every time when the process is executed, the output is produced.

If any output name appears in a row, then the columns on the row with
“X” show a combination of inputs that may be used to produce the output.
An output may occupy more than one row to indicate that more than one
group of inputs may be used to produce the output.

In Fig. 2.45 we give an example which models the activities of the orga-
nization committee of the conference in connection to the ordering of tickets.
Here the use of process-modeling and I/O-matrices is shown.

2.5 PPP — A Multi-perspective Modeling Approach

P1

)

'©
f4

—_—

P2

81

fl T | 6 T |— T fo
—H_>:| deal with T N book
f2 order 8 tickets T
f3 T 5 7 8
- —
- Sl "‘;
DATA IN FLOWS I/O CONDITIONS "",’
f1: phone call P1: P2: "'.'
f2: item %
f3: order fl 213 f6 |17 '.\.
f4: accepted order
f5: rejected order f4]x X 8 X
f6: time signal 4 X Fo| x
f7: order
{8: ticket infor. 5 X | x
f9: a signal showing
no order to be 5 X
dealt with
P1
f1.2
P1.1 7 P1.3 A
1 receive | [T > order \T e
——®=| orderon - - P14 H
: phone |71 thzleﬁ = fMT T 4
— — check :
T] order ﬁ
f2 13 TN
— H
1.7
s1.1 [orders
P12
f1.5
3 _._L receive _=
H order T 1.6
H - J
DATA IN FLOWS /O CONDITIONS
f1.1: empty order P1.3: P1.4:
f1.2: unfinished P1.1:
order 0 f1.1f1.2 2 1.4 1.6 f1.7|
1.3: order
f1.4: request for 11 | x flz | X X fa | X X
dealing with .
order f1.2 X | X 4 X X
f1.5: order P1.2:
f1.6: request for f3 X X f5 X X
dealing with 3
order - f1.3 X | X f5 X X
f1.7: order 1.5 1.4 X <
f1.6 X 1.4 X | x

Fig. 2.45. The activities for ordering tickets in the IFIP conference

82 2. Conceptual Modeling Languages

PLD, process life description language. A process life description gives a pro-
cedural description of some pattern of behavior. A pattern is attachable to a
process or method and can involve interactions with other patterns as well as
internal computations. In this way, the description of methods can be applied
directly from a PLD being part of a process.

The following elements are used to build a PLD:

— Start: Indicates the beginning of a PLD diagram.

— Receive: Is used to receive data from other PLD models.

— Assignment: Is used for variable-assignment, a PLD block or a subroutine
call.

— Choice: Is used to specify selections (if and case-constructs)

— Iteration: Is used to specify loop-constructs (for and while loops).

— Send: Is used to send data to other PLD models.

Figure 2.46 shows a simple PLD model also indicating the link of the PLD
to the flows in the process-models.

e
Start

receive f1
from P1

receive f2
fromP2 |

selection e / / flag / else |
send f4 A=0; send f3
to P4 > | . for lin'g..5 N) | ©0P3 >

A=1;

Receive Selection Assign'ment Alternative Iteration Send

Fig. 2.46. Example of a PLD model

2.5.3 DRL - Deontic Rule Language

DRL is an extension of Tempora ERL [254]. The general rule-format is:

when trigger if condition, it is deontic for role/actor consequence else
consequence.

— trigger is optional. It refers to a state change. The trigger is expressed in
a limited form of first order temporal logic.

— condition is an optional condition in first order temporal logic.

— deontic is one of the deontic operators obligatory (O), recommended (R),
permitted (P), discouraged (D), and forbidden (F). A rule of necessity has
no deontic operator.

— role/actor is an optional specification of the role or the actor that the rule
applies to,

2.5 PPP — A Multi-perspective Modeling Approach 83

— consequence is an action or state which should hold given the trigger and
condition.

DRL contains explicit construct for querying the ONER-model. Action
rules are typically linked to processes in PPM, giving the execution semantics
for the processes [212]. This is similar to how this is done in Tempora, as
illustrated in Sect. 2.2.5.

Also timers and external agents can be described by rules for simulation
purposes.

Both formal and informal rules are used during modeling. One can also
specify necessary and deontic relationships between sets of rules, i.e. that a
set of rules necessitates, obligates, recommends, permits, discourages, forbids,
or exclude the existence of other lower-level rules [208]. Exception-hierarchies
through overrules and suspends relationships can also be expressed.

In addition to the relationships, the following mechanisms are used to
create a directed acyclic graphs (DAGs) with and/or-nodes of rules. The
description below refers to Fig. 2.47.

1 2 3
R1 R1 R1
o (o]
R2 R3 R2 R3 R2 R3

R1 recommends R2

R1 recommends R3

R1 obligates R2 or R3

R1 obligates R2 and R3

4 6
D
RI<—R2 R1 R2
R1 R2 o o
F& / o
R3 R3 R3

R1 recommends R3

R2 obligates R3

R2 discourages R1
R1 or R2 obligates R3

Fig. 2.47. Rule-hierarchies

R1 and R2 obligates
3

1. The usual case with rule R1 recommends rule R2 and R3 independently.

84

2. Conceptual Modeling Languages

. Nustrates an or-situation, thus similar situations as described by East-

erbrook in Sect. 2.2.5 are supported. Based on rule R1, there are two
perceived ways of partly fulfilling this in a lower level rule. These two
rules, R2 and R3 might be inconsistent, even if this is not indicated in
the diagram.

This is similar to the first situation, but indicates that both R2 and R3
should be fulfilled simultaneously if one wants to fulfill R1, thus R2 and
R3 are subgoals of R1. This is parallel to the subgoalof relationship pro-
posed by Feather. This approach is often used in projects using military
standards, see e.g. [73, 11].

Indicates that rule R3 is both recommended by rule R1 and obligated
by rule R2. These higher level rules can have the same source, or they
represent the views of two different actors.

. Indicates that rule R3 is obligated by either rule R1 or rule R2, but not

both, since in this case, having rule R2 in place discourages having rule
R1.

Similar to the fourth situation, but indicates that it is the simultaneous
fulfilling of R1 and R2 that obligates R3. The reason for modeling this
kind of situation is that one might choose R1 not to be valid of some
reason. With this situation, R3 would not be regarded as obligated.

Both functional and non-functional and specific project goals and rules

can be part of the goal-hierarchy, although we do not propose an automatic
support of NFR goals as in [270]. This could be a part of the general model of
the developer. When to introduce functional and non-functional goal should
be taken care of in the methodology assuring that the approach still will be
problem-oriented and not product-oriented to the extent possible.

2.5.4 AML — Actor Modeling Language

The main symbols used for the modeling of actors are shown in Fig. 2.48.

Actors and roles are connected in the following ways:

— Relationships: Four general relationships are defined:

1.

2.

An actor can be part of another (organizational) actor. One actor can
be part of many actors at the same time.

An actor can (be expected to) fill a role. One actor can fill more than
one role, and a role can be filled by more than one actor. A role can be
identified as a set of expectations which normally also will apply to the
actors that fill the role.

A role can be part of another role, i.e. some of the expectations of a role
also applies to another role.

A role is instituted by an actor. The set of expectations to a role often
comes from one or more actors. If there are specific expectations to an
actor in a given role, this can be depicted using the agent-symbol.

2.5 PPP — A Multi-perspective Modeling Approach 85

Modelling constructs

Actor Role Agent

Relationship Flow Support

AR [RR -

Actor relations

Part of Fill Part of Instituted by
— — — —
& & /AN {Rliﬁ fR2§5 £R1§> 2A§
Part of in role of R Actor support

B R R

Interaction in the role of

Interaction = >
SN —/ R A RA RB B

lllocutionary E Content
point, data and/or ™. Perlocuti -
propositional Typ §naterial) ‘(Eﬂ(-:érctt))cu MY |nteraction on behalf of
content, and ~ o h
dominant claim ~ R4
\ | © ©
/ | \ A /B
/
I \
Interface Channel Interface

Types of actors and roles

A A AA A ARA

Individual ~ Organiza- Applicative ~ Supportive Hardware Internal External
tional

Power relations between individual actors

Fig. 2.48. Basis for actor models

— Support: Actors and roles can support other actors and roles in performing
their tasks. We will indicate what this means in more detail when discussing
types of actors and roles below. It is also possible to indicate that actors
potentially support other actors.

— Communicate: Actors and roles that are filled by an actor can communicate
by exchanging items over flows.

Roles can also be related with over-rules relationships, indicating in the
cases of role-conflict which role that is regarded as most important, other
things being equal. One can also indicate for which actor this applies if nec-
essary.

The interaction between actors can be divided up further, much in line
with the interprocess-communication in PPM, but with certain possibilities

86 2. Conceptual Modeling Languages

for extension when it comes to language action modeling. In addition to the
type and contents of the items being sent, how many that they are sent to
or received by, and if they trigger the other actor, one can indicate the set
of illocutionary points, propositional contents, and dominant claims of the
communication.

Relationships between actors can be further annotated, by additional ac-
tors or roles on both sides of the relationship.

— In the role of: An actor can support, communicate, or be part of another
actor in a given role. In the cases of communicate and support one can also
annotate the receiving actor similarly.

— On behalf of: An actor can communicate, support, or be part of another
actor on behalf of another actor. In the cases of communicate and support
one can also annotate the receiving actor similarly.

It is distinguished between the following types of actors:

— Individual actor (I) e.g. you and me.

— Organizational actor (E) e.g. IDI, the institute.

— Applicative software actor (A) e.g. the conference system C4.
— Supportive software actor (S) e.g. Ingres DBMS.

— Hardware actor (H) e.g. the file server storlind.

One can also indicate if an actor is external (e) or internal (i) relative to
some organizational actor. The internal actor is typically the organization in
which the CIS is being developed and maintained, but do not need to, i.e.
one can easily produce different views of actor-models.

The types of actors above can freely be mixed with the internal/external
classification. Roles can also have the types as indicated above.

The term support has the following more specialized meanings.

— If one hardware-actor support another hardware-actor it is used by it to
achieve an overall goal that some social actor has set for it. General hard-
ware compatibility is indicated through support.

— If one hardware actor can support a software actor (supportive or applica-
tive), the software actor is executed on it. General executional compatibility
is indicated through a potential support.

— If one software actor supports another software actor, it is used by it to
achieve an overall goal that some social actor has set for it. General software
compatibility is indicated by potential support.

— If a computational actor supports a social actor, it means that it is used
by the individual or organizational actor to achieve further goals.

— If a social actor support a computational actor, then they ensure the pos-
sibility for the computational actor to support additional organizational
actors. Thus these actors indirectly support the other organizational ac-
tors.

2.5 PPP — A Multi-perspective Modeling Approach 87

— That a social actor support another social actor indicate that it helps the
other actor to achieve its goal in some way.

Finally, it is possible to indicate the power-relationships between individ-
ual actors and roles, indicating the power structure in an organization.

2.5.5 UID — User Interface Description Language

Although the model of the user interface is usually not regarded as a concep-
tual model, we will briefly describe the languages for developing such models
in PPP, including the links to the other languages, since the user-interface
is an important part of most application systems. The description is based
on [111, 310].

The model separate the presentation and behavioral parts of a user in-
terface. By the presentation part one means the part of the interface which
is visible to the user. By the behavioral part one refers to the interaction
between objects of the presentation part, and interaction with other parts of
the application. The two parts of UID are called UIP (User Interface Presen-
tation) and UDD (User interface Dialog Description), respectively.

Presentation — UIP . The language to represent the presentation part of
the user interface is object oriented.

— Components of a user interface can be modeled as encapsulated objects
with a defined set of methods and interfaces. Execution of an application
implies interaction between these objects and other parts of the application
by means of message passing.

— Components of a user interface can be grouped in families of objects with
similar behavior. UIP makes it possible to generate user defined classes of
interface components.

Each class in the user-interface hierarchy have a set of properties that can
have values, a set of methods that can change or retrieve these values, and
a set of events that an object of the class can react to. A state of a screen
in a user-interface is defined as a mapping of values to all properties except
value contents of all objects in the screen. When one of these changes due to
an event, a state transition takes place.

Behavior — UDD. Interaction between components of a user interface and
its environment is modeled by UDD. A user interface will be a set of screens
which can be thought of as a set of state machines as described above. Tran-
sitions are defined by the set of services available in each state and the envi-
ronment the interface is used. UDD is based on Statecharts (see Sect. 2.2).
One Statechart is made for each screen.

The extensions in Fig. 2.49 are made to Statecharts in UDD.

— Events not causing transitions: Events which alter data attributes often do
not cause state transitions. Such an event is presented by a special symbol
within the state. This possibility is also included in OMT.

88 2. Conceptual Modeling Languages

B Event name @ Screen name n... PPM ONEF

Event not Message box Screen Local storage Views to PPM and
causing transition ONER models

Fig. 2.49. Symbols in the extensions to Statecharts used in UDD

— Message box: A typical graphical user interface uses message boxes exten-
sively. To simplify the diagram of such user interfaces, explicit message
boxes are used in UID.

— Screen: When modeling a screen, one often needs to include other screens
in the diagram because of possible transition of control out of the current
screen and into another.

— Local Storage Structure: Data structures to store data for the screen which
are not shown to the user.

— View: Connections to PPM and ONER models.

Often one will need to perform a selection of data from the database when
invoking a screen, and this is specified with a scenario including selection
criteria (using the defined algebra on ONER models). The PPM view is
used to indicate the action of an event, thus indicating which data in the
user interface (including the local structure) which will be sent to trigger a
process. This will be linked to one or more outputs from processes “further
down” in the PPM, to indicate when to return control to the user-interface,
and where to put outputs.

2.6 Chapter Summary

We have in this chapter looked into two main aspects of conceptual modeling
languages. The use of abstraction mechanisms, and the use of perspectives.

A conceptual model is an abstraction. One mechanism for abstraction
used in many of the existing languages for conceptual modeling is the use
of hierarchies. There is a vast number of hierarchies that one might want to
model, and these have rather diverse properties. Work in the field of semantic
data modeling and semantic networks has lead to the identification of four
standard hierarchical relations:

classification,
— aggregation,
— association, and
generalization.

Modeling languages can be divided into classes according to the core phe-
nomena classes that are represented in the language. We have called this the
main perspective of the language.

2.6 Chapter Summary 89

To give a broad overview of the different perspectives state-of-the-art
conceptual modeling approaches accommodate, we have described languages
taking the following perspectives:

— Structural perspective. Examples of languages are ER, ONER, GSM, ERT,
semantic networks, and conceptual graphs.

— Functional perspective. Examples of languages are DFD, PID, PPM,
SA/RT and the work by Sindre and Opdahl.

— Behavioral perspective. Example of languages are STD, STM, Statecharts,
Petri-Nets, and BNM.

— Rule perspective. Examples of languages are COMEX, ERL, DRL; and the
work of Mylopoulos and Sutcliffe.

— Object perspective. Examples of languages are OMT, UML, HOOD, and
OOA.

— Communication perspective. Examples of languages are Action Workflow,
SAMPO, ABC/DEMO, and COMMODIOUS.

— Actor and role perspective. Examples of languages are AM, ALBERT,
OORASS, and the work of Mylopoulos et al.

A model in a given language having only one perspective will seldom be
sufficient to capture all interesting aspects of a situation. With this in mind
more and more approaches are based on the combination of several modeling
perspectives. Four ways of approaching this are:

1. Use existing single-perspective languages as they are defined, without
trying to integrate them further.

2. Refine common approaches to make a set of formally integrated, but still

partly independent set of languages.

Develop a set of entirely new integrated conceptual modeling languages.

4. Create frameworks that can be used for creating the modeling languages
that are deemed necessary in any given situation.

w

A consequence of a combined approach is that it requires a much better
tool support to be practical. Due to the increased possibilities of consistency
checking and traceability across models, in addition to better possibilities
for the conceptual models to serve as input for code-generation, and to sup-
port validation techniques such as execution, explanation generation, and
animation, the second of these approaches has been receiving increased inter-
est. Basing the modeling languages on well-known modeling languages also
have other advantages on behalf of perceptibility, and because of the existing
practical experience with these languages. Work based on language-modeling
might also be used to improve the applicability of the other approaches. PPP
is one such approach that has been presented in more detail.

90 2. Conceptual Modeling Languages

3. Quality of Conceptual Models

In this chapter we describe a framework for understanding quality in concep-
tual modeling. ’Quality’ is a difficult notion, and within the field of informa-
tion systems, many approaches to quality have been proposed. A standard
approach within the engineering community is to say that a product has high
quality if it is according to its specification. For example the ISO 9000 qual-
ity standard is set up according to this philosophy. Denning [89] takes this
further by viewing this as the first level of quality. A second level is achieved
if there are no negative side-effects of the information system. The highest
level of quality is achieved if in addition to the first two levels, the informa-
tion system enables additional information system support to its users not
conceived in the first place, i.e. giving the users more of what they need than
what was promised in the specification.

Previous proposals for quality goals for conceptual models and require-
ment specifications as summarized by Davis [81] have included many use-
ful aspects, but unfortunately in the form of unsystematic lists as discussed
in [236, 239]. They are also often restricted in the kind of models they re-
gard (e.g. requirements specifications [73, 81]) or the modeling language (e.g.
ER-models [263]). Some recent frameworks [109, 239, 306] have attempted to
take a more structured approach to understand quality, and the framework
presented here integrates aspects from all of these.

3.1 Overview and Evaluation of Existing Frameworks

We will here give a short overview and comparison of three existing frame-
works:

— Lindland et al [239].
— NATURE [306].
— FRISCO [109].

Whereas [239] was briefly described in Chap. 1, we will here describe the
other two framework briefly, together with some of the motivation behind the
combined framework.

92

Specification

3. Quality of Conceptual Models

complete e

fair ==

common view

initial
input

opague —= Srsonal views ~ Representation

T T T
informal semi—-formal formal

Fig. 3.1. Pohl’s framework (From [306])

3.

1.1 Pohl’s Framework

Pohl’s framework [306] which is part of the NATURE-project [186], is sum-
marized in Fig. 3.1. In this framework the requirements specification process
which often includes conceptual modeling, is stretched out along three di-
mensions:

3.

the specification dimension deals with the degree of requirements under-
standing. At the beginning of the process, this understanding is opaque.
The desired output of the requirement specification process is a complete
CIS-specification, where completeness is measured against some standard,
guideline, or some other model.

the representation dimension deals with the degree of formality. At the
beginning of the process, statements will usually be informal. Since formal
representations allow reasoning and partial code-generation, these are more
product-oriented. Hence, a transformation of informal requirements to a
formal representation is regarded as desirable.

the agreement dimension deals with the degree of agreement. The require-
ment specification process has many stakeholders, and in the beginning
each of these will have their personal views concerning the requirements.
The goal of the process is to reach agreement on these requirements. De-
tected conflicts must be resolved through discussions among those affected.

1.2 FRISCO

The FRISCO report [109] identifies that the means of communication and
related areas can be examined in a semiotic framework. The below semiotic

3.1 Overview and Evaluation of Existing Frameworks 93

layers for communication are distinguished, forming a semiotic ladder. Model
denotations are sign, and thus they have considered the semiotics of models.
The key concepts to be included in information systems models is regarded
to be

— Physical: use of various media for modeling - documents, wall charts,
computer-based CASE-tolls and so on; physical size and amount and effort
to manipulate them; human resources needed; economics.

— Empirical: variety of elements distinguished; error frequencies when being
written and read by different users; coding (shapes of boxes); ergonomics
of computer-human interaction (CHI) for documentation and CASE tools.

— Syntactic: languages, natural, constrained or formal, logical and mathe-
matical methods for modeling.

— Semantic: interpretation of the elements of the model in terms of the real
world; ontological assumptions; operations for arriving at values of ele-
ments; justification of external validity.

— Pragmatic: roles played by models - hypothesis, directive, description, ex-
pectation; responsibility for making and using the model; conversations
needed to develop and use the model.

— Social: communities of users; the norms governing use for different pur-
poses; organizational framework for using the model.

These lists are indicative rather than exhaustive. These layers can be di-
vided into two groups in order to reveal the technical vs. the social aspect.
Physics, empirics, and syntactics comprise an area where technical and for-
mal methods are adequate. However, semantics, pragmatics, and the social
sphere cannot be explored using those methods unmodified. This indicates
than one has to include human judgment when discussing concepts in the
higher semiotic levels.

3.1.3 Overall Comparison

Although the frameworks of Lindland et al. and Pohl have quite different
appearances, they are rather similar in their deeper structure. The following
observations can be made:

— the representation dimension corresponds to the syntactic dimension, since
both these deal with the relationship between the specification and the
language(s) used. The main differences in this respect is that Pohl’s frame-
work discusses several languages, whereas Lindland et al.’s framework sees
the language as one and just considers whether the specification is correct
according to the rules of that language (which may be a union of sev-
eral languages, formal, semi-formal, and informal). It should also be noted
that Pohl’s framework regards a formal specification as a goal. Lindland’s
framework states that formality is a mean to reach a syntactically correct
specification, as well as higher semantic and pragmatic quality through
consistency checking and model executions of different kinds.

94 3. Quality of Conceptual Models

— the specification dimension corresponds to the semantic dimension, since
both these deal with the goal of completeness. A notable difference here is
that Pohl sees completeness as the sole goal (possibly including validity?),
whereas Lindland’s framework also identifies the notions of validity and
feasibility. The reason for this discrepancy seems to be a somewhat different
use of the term completeness. Pohl uses the term relative to some standard,
whereas Lindland et al. uses it relative to the set of all statements which
would be correct and relevant about the problem at hand.

— the agreement dimension is related to the pragmatic dimension, since both
these deal with the specification’s relationship to the audience involved.
The difference is that Pohl states the goal that the specification should
be agreed upon, whereas Lindland et al. aim at letting the model be un-
derstood. In a way these goals are partly overlapping. Agreement without
understanding is not very useful in a democratic process. On the other
hand, using the semiotic levels of FRISCO, it is more appropriate to put
agreement into the social realm going beyond the framework of Lindland
et al.

Comparing the Lindland framework to FRISCO, we see that the frame-
work suggested by Lindland et al. to some extend take the insight of semiotic
levels into account by differentiating between syntactic, semantic, and prag-
matic quality. Even if the terms are used somewhat differently, the overall
levels coincide. On the other hand, neither the lower physical and empirical
level or the social level can be said to be discussed and covered in the existing
framework. As indicated above, the social aspects of agreement is currently
not handled in a satisfactory way. When discussing agreement, the concept
"domain’, as currently defined, is also problematic, since it represents an ideal
knowledge about a particular situation, which is not obtainable for the actors
of the audience that are to agree.

Based on this, we present an extension of the framework of Lindland et
al. taking the above aspects into account. Parts of this extended framework
have earlier been presented in [207, 210, 211, 345]. In addition we include a
discussion of language quality based on [331, 344]. Language quality together
with knowledge quality allows us to focus in more detail on the aspects which
in the original framework were termed rather loosely 'appropriateness’.

3.2 A Framework for Quality of Conceptual Models

In this section, we outline the overall framework. The framework has three
unique properties:

— It distinguishes between goals and means by separating what you are trying
to achieve from how to achieve it.

— It is closely linked to linguistic and semiotic concepts. In particular, the
core of the framework including the discussion on syntax, semantics, and

3.2 A Framework for Quality of Conceptual Models 95

pragmatics is parallel to the use of these terms in the semiotic theory of
Morris (see e.g. [276] for an introduction). The inclusion of such semi-
otic levels enables us to address quality at different levels. A term such a
‘quality’ is used on all the semiotic levels. We include physical, empirical,
syntactical, semantical, pragmatic, and social quality in addition to knowl-
edge and language quality. A brief overview of each area is given in this
chapter. Means for achieving syntactical, semantical, pragmatic, and social
quality is discussed in more detail in separate chapters.

— It is based on a constructivistic world-view, recognizing that models are
usually created as part of a dialogue between the participants involved in
modeling, whose knowledge of the modeling domain changes as modeling
takes place.

The main concepts and their relationships are shown in Fig. 3.2. We take
a set-theoretic approach to the discussion of the different quality aspects.
Sets are written using CALZGRAPHIC letters, whereas elements of sets are
written in normal uppercase letters. An overview of the symbols used can be
found in Appendix C. Readers familiar with the field of logic programming
should be aware of that we use several terms differently from how they are
used in that field.

Social
quality
- Social
Participant Perceived actor
knowledge semantic . .
K quality interpretation
i
Pragmatic
Empirical quality
quality
Modeling Szumae}ir:)t,lc Model Séﬂ:ﬁsc Language
domain externalization extension
D M L
Pragmatic
quality
Technical

actor
interpretation
T

Fig. 3.2. Extended framework for discussing quality of conceptual models

96

3. Quality of Conceptual Models

Important sets are:

A, the audience, i.e. the union of the set of individual actors Ai,...,Ax

the set of organizational actors Agy1,...,4, and the set of technical actors

Ant1,e-A, who need to relate to the model. The individuals being mem-

bers of the audience are called the participants of the modeling process.

The participants P is a subset of the set of stakeholders S of the process

of creating the model. In general, stakeholders of a system development

effort can be divided into the following groups [250]:

— Those who are responsible for design, development, introduction, and
maintenance of the CIS, for example, the project manager, system de-
velopers, communications experts, technical authors, training and user
support staff, and their managers.

— Those with financial interest, e.g. those responsible for the application
systems sale or purchase.

— Those who have an interest in its use, for example direct or indirect users
and users managers.

— Those who are to support the users on technical matters on a day to day
basis.

A technical actor is typically a computer program e.g. a CASE-tool, which
must “understand” parts of the model to automatically manipulate it to
for instance perform code-generation or to execute the conceptual model.
The audience often changes during the process of developing the model,
when people leave or enter the project.
L, the language extension, i.e. the set of all statements that are possi-
ble to make according to the vocabulary and syntax of the modeling lan-
guages used. Several languages can be used in the same modeling effort,
corresponding to the sets Ly,...,£;. These languages can be inter-related.
Sub-languages are related to the complete language by limitations on the
vocabulary or on the set of allowed grammar rules in the syntax of the
overall language or both. The statements in the language model of a for-
mal or semi-formal language L; are denoted with M (L;). This model is
often called the meta-model of the language, a term which is appropriate
only in connection to work on repositories for conceptual models.

L can be divided into L, Lg, and Lr for statements made in informal,

semi-formal and formal parts of the language, respectively. £L = Ly U Lg U

Lp. L, denotes the statements with logical semantics.

The languages used in a modeling effort are often predefined, but it also

happens that one create specific modeling languages using e.g. a meta-

CASE tool for the modeling effort, in which case the syntax and semantics

of the languages have to be inter-subjectively agreed among the audience as

part of modeling. If one are using an existing language, the “correct” syntax
and semantics of the language will be regarded as predefined. One can
choose to apply only parts of the predefined modeling languages for a given

3.2 A Framework for Quality of Conceptual Models 97

modeling effort, and change this subset during a project as appropriate.
We will look into how this can be done in practice in Chap. 8.
M, the externalized model, i.e. the set of all statements in someones model
of part of the perceived reality written in a language. Mg is the set of ex-
plicit statements in a model, whereas M is the set of implicit statements,
being the statements not made, but implied through the deduction rules
of the modeling language. For example, assume that L is propositional
logic and Mg contains the statement A — B and A. M will contain
the derived statement B. A model written in language L; is written Mp,.
The meaning of My, is established through the inter-subjectively agreed
syntax and semantics of L;.
For each participant, the part of the externalized model which is consid-
ered relevant can be seen as a projection of the total externalized model,
hence M can be divided into projections M1, ..., MF* corresponding to the
participants Aj,..., Ax. Generally, these projections will not be disjoint,
but the union of the projections should cover M. M will obviously evolve
during modeling as statements are inserted and deleted into the model.
Another important distinction, is between the model as accessed by the
users, and the internal representations of the model which the technical
actors have to relate to.
D, the modeling domain, i.e. the set of all statements which can be stated
about the situation at hand. If one use an objectivistic ontology, or one
accept a high degree of inter-subjective agreement on the modeling domain,
this is similar to the definition of the original framework.
One can differentiate between domains along two orthogonal dimensions:
— Temporal: Is the model of a past, current, or future situation as it is
perceived by someone in the audience?
— Scope: Examples of different scopes are: (A subset of) the physical world,
(a subset of) the social world, an organization, an information system,
a computerized information system.
More specifically, during development of a CIS, several different although
interrelated modeling domains, with accompanying models are recog-
nised [177]:
— The existing IS as it is perceived, M(EIS). Another description of this
is the internalization of the current organizational reality.
— A future IS as it is perceived, e.g. requirements to a future IS, M(FIS).
— The external behavior of the future CIS as it is perceived, e.g. require-
ments to a future CIS. This can be regarded as an extension of M(F15S).
— The internal behavior of the future CIS as it is perceived, e.g. design of
a future CIS, M(FCIS).
— The implemented CIS. Also the CIS can be regarded as a model, al-
though usually not a conceptual model in the sense we use the term [36].
Specifically when a CIS is populated with dynamically changing data,

98

3. Quality of Conceptual Models

one can use the quality framework to look at aspects regarding areas
such as data quality. This is not the focus of this book.

The domains evolves during modeling, both because of the modeling itself

and external changes. Any of the above domains can be subdivided into

three parts, exemplified by looking at a software requirements specifica-

tion [81]:

— Everything the CIS is supposed to do (for the moment ignoring the
different views the stakeholders have on the CIS to be produced). This
is termed the primary domain.

— Constraints on the model because of earlier baselined models such as
system level requirements specifications, statements of work, and earlier
versions of the requirement specification to which the new requirement
specification must be compatible. This is termed the pre-existing context.

— Constraints through the fact that one wants to produce CIS based on
the software requirement specifications under given time and resource
limits. This is termed the purpose context.

K, the relevant explicit knowledge of the audience, i.e. the union of the

set of statements, Ky,...,K, one for each participant. IC; is all possible

statements that would be correct and relevant for addressing the problem
at hand according to the explicit knowledge of participant A;. K; C K7,
the explicit internal reality of the social actor A4;. M; is an externalization
of K; and is a model made on the basis of the knowledge of the individual
or organizational actor. Even if the internal reality of each individual will
always differ, the explicit internal reality concerning a constrained area

might be equal, especially within specific groups of participants [136, 291].

Thus it can be meaningful to also speak about the explicit knowledge of

an organizational actor. M; \ M = (), whereas the opposite might not be

true, i.e. more of the total externalized model than the part which is an
externalization of parts of an actor’s internal reality is potentially relevant
for this actor. K will and should change during modeling to achieve both

personal and organizational learning [380].

Representing knowledge as sets of statements is not to claim that this is

how knowledge is actually stored in the human brain, for this claim would

clash with advances in brain sciences on this topic [65]. On the other hand,
it is a useful abstraction for the kind of knowledge it is possible to represent
explicitly using a language.

7T, the social audience interpretation, i.e. the set of all statements which

the social audience perceive that an externalized model consists of. Just

like for the externalized model itself, its interpretation can be projected
into 74, ...,Z,, denoting the statements in the externalized model that are
perceived by each social actor.

T, the technical audience interpretation. Similar to above Z,,41, ..., Z,, de-

note the statements in the conceptual model as they are interpreted by

each technical actor in the audience.

3.2 A Framework for Quality of Conceptual Models 99

The primary goal for semantic quality is a correspondence between the ex-
ternalized model and the domain, but this correspondence can neither be
established nor checked directly: to build the model, one has to go through
the participants’ knowledge regarding the domain, and to check the model
one has to compare this with the participants’ interpretation of the exter-
nalized model. Hence, what we observe at quality control is not the actual
semantic quality of the model, but a perceived semantic quality based on
comparisons of the two imperfect interpretations.

Table 3.1 shows an overview of the goals and means that have been identi-
fied on the different semiotic levels. The means for syntactic, semantic, prag-
matic, and social quality will be discussed further in Chapters 4-7. Language
quality goals are looked upon as means in the framework. Language quality
is discussed briefly towards the end of this chapter. A specific technique is
positioned as a mean in the category where it is believed to be of most impor-
tance. We have also indicated quality types that can be beneficial to achieve
before attacking the relevant area, thus indirectly the means for achieving e.g.
empirical quality is also a potential mean for achieving pragmatic quality.

100 3. Quality of Conceptual Models

Table 3.1. Framework for model quality

Quality type Goals Means
Beneficial Model and language Activities/
existing properties Tool-support
quality
Physical Externalization Domain app. Meta-model adaption
Part. knowledge app.
Internalizability Persistence DB-activities/
Availability repository
Empirical Minimal error Physical Expressive economy Readability index
frequency (externalization) Aesthetics Diagram layout
Syntactic Syntactic Physical Formal syntax Error prevention
correctness (externalization) Error detection
Error correction
Semantic Feas. validity Physical Formal semantics Consistency checking
Feas. completeness (externalization) Modifiability Statement insertion
Syntactic Statement deletion
Driving questions
Model reuse
Model testing
Pragmatic Feasible Physical Operational semantics Inspection
comprehension Empirical Visualisation
Syntactic Filtering
Rephrasing
Paraphrasing
Explanation
Executability Execution
Animation
Simulation
Perceived Perc. validity Physical Variety Participant training
semantic Perc. completeness Empirical
Syntactic
Pragmatic
Social Feasible agreement Physical Inconsistency Model integration
Pragmatic handling Conflict resolution
Perc. Semantic
Knowledge Feas. knowledge completeness Stakeholder identification

Feas.knowledge validity

Participant selection
Problem selection

3.3 Physical Quality 101

Throughout the chapter we will use part of an ER-model from the
conference-case as depicted in Fig. 3.3 to illustrate the different aspects. The
numbers on the figure refer to different statements in the model.

11 6

| PERSON

Fig. 3.3. A simple ER-diagram

3.3 Physical Quality

Although information system models are not usually of the physical kind,
any model can be represented physically somehow, e.g. on disk or paper.
In our example, it is basically represented on paper as Fig. 3.3. The basic
quality features on the physical level is externalization, that the knowledge of
some social actor has been externalized by the use of a conceptual modeling
language, and internalizability, that the externalized model is persistent and
available enabling the audience to make sense of it. This is not the same as
internalization of the model.

Externalization can be defined as the number of statements known about
the domain that is not yet stated in the model divided by this number of
statements. Mathematically, this can be stated:

externalization = 1 — %

The major means for achieving this are using modeling languages which
are appropriate for the domain and participant knowledge. This will be dis-
cussed further under language quality.

Internalizability on the physical level has two primary means, persistence
and availability:

(3.1)

— Persistence: How persistent is the model, how protected is it against loss
or damage? This also includes previous versions of the model, if these are
relevant. A previous version of the model will be part of the modeling
domain and it might be necessary to model the relationship to this.

102 3. Quality of Conceptual Models

— Availability: How available is the model to the audience? Clearly, this is de-
pendent on its externalization. Availability also depends on distributability,
especially if members of the audience are geographically dispersed. Then, a
model which is in an electronically distributable format will be more easily
ditributed than one which must be printed on paper and sent by ordinary
mail or fax. It may also matter exactly what is distributed, e.g. the model
in an editable form or merely in an output format.

One important activity in this area is the adaption of the meta-model of
the basic language used to suit the domain, both by adding concepts, but
also by removing concepts (temporarily) from the language if they are not
relevant for the modeling of the particular domain. This is treated in more
detail under the discussion on domain appropriateness in Sect. 3.11. Many of
the other activities in connection with physical quality are typically based on
traditional database-functionality using a repository-solution for the internal
representation of the model [168, 201]. In addition,it is regarded necessary
for advanced tools for conceptual modeling and system development to in-
clude functionality such as version control and configuration management
and advanced concurrency control mechanism, that are not normally found
in conventional DBMSs [168]. A more detailed list of tool-mechanisms, most
of them concerning availability, is presented below:

— Data independence: Modeling tools do not need to change when physical
storage is rearranged, so long as the logical schema remains unaltered.

— Openness: New tools with access to the same model are easily added.

— Queries: The DBMS provides a simple user interface for interactive queries.

— Reports: Users can easily define standard reports.

— Real-time updating: The latest state of the model is always available. Due
to the long transactions often needed to make consistent new versions of a
model, it is doubtful that one would like the same kind of real-time update
as in a transaction system. On the other hand, when a new consistent
version is available, it should be available for the audience as quickly as
possible.

— Locking: Simultaneous attempts to update the same object are prevented.

— Concurrency: Subject to the bar on simultaneous updates, multiple tools
and multiple users may work concurrently on ”live” data.

— Security: Objects may be protected from unauthorized reading, writing, or
deletion.

— Transactions: Being able to store a set of changes to the model as a whole,
or not at all.

— Recovery: After any abnormal event, the model is restored to a truthful
and, as far as possible, up-to-date state.

— High performance.

— Versioning and configuration management.

3.4 Empirical quality 103

Aspects related to versioning of conceptual models and concurrency con-
trol will be discussed in Chap. 8.

3.4 Empirical quality

As indicated above, empirical quality deals with the variety of elements dis-
tinguished, error frequencies when being written or read, coding (shapes of
boxes) and ergonomics for Computer-Human Interaction for documentation
and modeling-tools. Specifically, automatic layout mechanisms for models are
included under this area.

Changes to improve empirical quality of a model do not change the state-
ments that is included in the model, thus we have no set-theorethic definition
of this quality goal.

For informal textual models, several means for readability have been de-
vised, such as the readability index. Over 50 procedures have been devised
that claim to be able to compute how difficult a text is to read. As an exam-
ple, the 'Fog Index’ is arrived at in four steps:

1. Select several 100-word samples from a text.

2. Calculate the average sentence length by dividing the number of words
by the number of complete sentences.

3. Obtain the percentage of long words in the entire sample: count the
number of words containing three or more syllables and divide this total
by the number of 100-words samples

4. Add 2 and 3 and multiply with 0.4. !

Several such formulae have been proposed, of varying level of complexity.
Most assume that difficulty can be measured simply in terms of the length
of the words and/or sentences. Factors such as the complexity of sentence
construction and the nature of word meaning is often found to be much
more important, but these the procedures usually ignore. Readability formu-
lae have thus attracted a great deal of criticism, but in the absence of more
sophisticated measures, they continue to attract widespread use, as a reason-
ably convenient way of predicting (though not explaining) reading difficulty.

For computer-output specifically, many of the principles and tools used
for improved human computer interfaces are relevant at this level. Other
general guidelines regards not mixing different fonts, colors etc. [338] in a
paragraph that is on the same level within the overall text. Another set of
techniques which can be useful at the empirical level, is those devised in
so-called information theory [336].

! The product is the (American) grade-level for which the text is appropriate, in
terms of difficulty.

104 3. Quality of Conceptual Models

For graphical models in particular, layout modification is a kind of
meaning-preserving transformation which can improve the comprehensibil-
ity of models. A layout modification a spatially different arrangement of a
diagrammatical representation of a model.

Lists of guidelines for graph aesthetics are presented in [23, 363], summa-
rized in Table 3.2, and this could be a possible starting point for automatic
layout modification.

Table 3.2. A taxonomy of graph aesthetics (From [363])

Aspect Explanation

ANGLE Angles between edges should not be too small.

AREA Minimize the area occupied by the drawing.
BALANCE Balance the diagram with respect to the axis.

BENDS Minimize the number of bends along the edges.
CONVEX Maximize the number of faces drawn as convex polygons.
CROSSING Minimize the number of crossings between edges.
DEGREE Place nodes with high degree in the center of the drawing.
DIM Minimize differences among nodes’ dimensions.
LENGTH Minimize the global length of edges.

MAXCON Minimize length of the longest edge.

SYMMETRY Have symmetry of sons in hierarchies.

UNIDEN Have uniform density of nodes in the drawing.

VERT Have verticality of hierarchical structures.

Another use can be to produce metrics, e.g. the number of crossing lines
divided by the number of links in total in a figure, or compared with the
minimum possible number of crossing as long as one do not duplicate symbols.
Similar metrics can be devised for the other aesthetics, and be used during
modeling to assess the potential for improving aesthetics. Based on such
metrics one could assess that the quality of Fig. 3.4 is less than that of
Fig. 3.3 on this account although it contains the same statements.

On the other hand, we should remember that aesthetics is a subjective
issue, thus familiarity with a diagram is often just as important for com-
prehension. As noted by [303] one of the main advantages of diagrammatic
modeling languages appears to be the use of so-called secondary notation, i.e.
the use of layout and perceptual cues to improve comprehension of the model.
Thus, one often need to constrain automatic layout modifications. Although
this more correctly should be placed as a means for pragmatic quality we
include it here since it is used in techniques for automatic graph layout. A
list of constraints used in connection to this is given in Table 3.3. Obviously,
it should be easy to retain the aesthetically pleasing diagram when we have
to update the model at a later point in time. This includes the possibility of
selecting and moving a group of nodes as one, the moving of complete sub-
trees as one in a hierarchical model, re-routing connections when changing

3.5 Syntactic Quality 105

PAPER

Fig. 3.4. Example on poor aesthetics

the relative position of two interconnected nodes, and functionality such as
snap-to-grid.

Table 3.3. A taxonomy of constraints for graph layout (From [363])

Aspect Explanation

CENTER Place a set of given nodes in the center of the drawing.
DIMENSION Assign the dimensions of symbols.
EXTERNAL Place specified nodes on the external boundary of the drawing.

NEIGH Place a group of nodes close.
SHAPE Draw a subgraph with a predefined shape.
STREAM Place a sequences of nodes along a straight line.

3.5 Syntactic Quality

Syntactic quality is the correspondence between the model M and the lan-
guage extension L of the language in which the model is written. When
looking at textual models, this include both lexicon correctness, syntax cor-
rectness and structural quality [108]. There is only one syntactic goal, syntac-
tical correctness, meaning that all statements in the model are according
to the syntax and vocabulary of the language i.e.

Mp\L=10 (3.2)
Syntax errors are of two kinds:

— Syntactic invalidity, in which words or graphemes not part of the lan-
guage are used. An example is given in Fig. 3.5, where an actor-symbol
not being part of the language is introduced.

106 3. Quality of Conceptual Models

e — = PersonN— S PAPER [

Fig. 3.5. Example of syntactic invalidity

— Syntactic incompleteness, in which the model lacks constructs or infor-
mation to obey the language’s grammar. An example is given in Fig. 3.6,
where only one of the entity-classes that take part in the relationship is
indicated.

y
— 1 PAPER [, |

Fig. 3.6. Example of syntactic incompleteness

J

The degree of syntactic quality can be measured as one minus the rate of

erroneous statements, i.e.

#(ME \ E) + Mmissing
#Mp

where M ,issing 1s the number of statements that would be necessary to
make the model syntactically complete.

syntactic quality = 1 — (3.3)

3.6 Semantic Quality

Semantic quality is the correspondence between the model and the modeling
domain [239)].
The framework contains two semantic goals; validity and completeness.

— Validity means that all statements made in the model are regarded as
correct and relevant for the problem, i.e.

M\D=0 (3.4)
A definition for the degree of validity could be
. #(Mg\ D)
validity =1 - ————= 3.5
v #Mp (3:5)

however, it can be questioned how useful such a metric might be, since it
can never be measured due to the intractability of the domain. An example
of invalidity is given in Fig. 3.7 where the attribute 'maximum speed’ is

3.6 Semantic Quality 107

CTITLED
.

PAPER

D

PERSON

%

Fig. 3.7. Example of semantic invalidity

added to the entity 'paper’, something we believe most persons would agree
is invalid.

— Completeness means that the model contains all the statements which
would be correct and relevant about the domain, i.e.

D\M=19 (3.6)
A definition for the degree of completeness could similarly be
D
completeness = 1 — w (3.7

This would only be interesting in limited domains, say e.g. that it is tem-
porarily decided upon a model of a new CIS. Then one would like to see all
the statements in the model also being part of the implemented CIS. On
the other hand, D is not completely held in the previous model in this case,
thus validity is also in here more relevant. An example of incompleteness
can be the original Fig. 3.3, missing 'name’ as an attribute of ’person’,
something we believe most persons would regard as important to represent
in a conference system.

For anything but extremely simple and highly inter-subjectively agreed do-
mains, total validity and completeness cannot be achieved. Hence, for the
semantic goals to be realistic, they have to be somewhat relaxed, by intro-
ducing the idea of feasibility. Attempts at reaching a state of total validity
and completeness will lead to unlimited spending of time and money on the
modeling activity. The time to terminate a modeling activity is thus not when
the model is “perfect” (which will never happen), but when it has reached a
state where further modeling is regarded to be less beneficial than applying
the model in its current state. Accordingly, a relaxed kind of validity and
completeness can be defined, which we term feasible validity and complete-
ness.

— Feasible validity: M \ D = R # (), but there is no statement r € R
such that the benefit of performing a syntactically valid delete of r from
M exceeds the drawback eliminating the invalidity 7.

— Feasible completeness: D\ M = 8§ # 0, but there is no statement s € S
such that the benefit of inserting s in M in a syntactically complete way
exceeds the drawback of adding the statement s.

108 3. Quality of Conceptual Models

Feasibility thus introduces a trade-off between the benefits and drawbacks
for achieving a given model quality. We have used the term “drawback”
here instead of the more usual “cost” to indicate that the discussion is not
necessarily restricted to purely economical issues. Judging completeness with
respect to some inter-subjectively agreed standard as suggested by Pohl [306]
is one approach to feasibility. By making the standard a part of the language,
one can in addition transfer a semantic problem into a syntactic one.

3.7 Perceived Semantic Quality

Perceived semantic quality is the correspondence between the actor interpre-
tation of a model and his or hers current knowledge of the domain. Perceived
validity and completeness can be expressed as indicated below:

— Perceived validity of the model externalization: Z; \ K; = 0.
— Perceived completeness of the model externalization: K; \ Z; = 0.

Metrics for the degree of perceived validity and completeness can be defined
by means of cardinalities the same ways as for syntactic quality.

#(Zi \ Ki)
#(Z;)

Le. the number of invalid statements interpreted, divided by the total number
of statements interpreted by the actor A4;. An example of a model with a
perceived invalid statement is the example in Fig. 3.3, where I, in the role of
an end-user of a conference system, would not regard the ’language’ attribute
to be relevant for 'paper’.

perceived validity = 1 — (3.8)

#Ki\Ti)
#(Ks)

Le. the number of relevant statements known, but not seen in the model,
divided by the total number of relevant knowledge statements known by the
actor A;. Also on these measures, a discussion of feasibility is useful. As on
semantic quality, I miss among other things the name of person in the model
in Fig. 3.3.

The perceived semantic quality of the model can change in many ways:

perceived completeness = 1 — (3.9)

— A statement is added to M?* which is understood to be in accordance with
the knowledge of actor A;, thus increasing perceived completeness.

— A statement is added to M? which is understood to not be in accordance
with the knowledge of actor A;, thus decreasing perceived validity.

— A statement is removed from M? that earlier was understood not to be
in accordance with the knowledge of actor A;, thus increasing perceived
validity.

3.8 Pragmatic Quality 109

— A statement is removed from M that earlier was understood to be in ac-
cordance with the knowledge of actor A;, thus decreasing perceived com-
pleteness.

— K; changes, which can both increase and decrease perceived validity and
completeness of the model. One way IC; can change, is through the inter-
nalization of another model made on the basis of the knowledge of another
actor. Internalization will be discussed further after discussing social qual-
ity below.

— The actor’s knowledge of the modeling language changes, potentially
changing 7; which can both increase and decrease the perceived validity
and completeness of the model.

3.8 Pragmatic Quality

Pragmatic quality is the correspondence between the model and the au-
dience’s interpretation of it. The framework contains one pragmatic goal,
namely comprehension. Not even the most brilliant solution to a problem
would be of any use if nobody was able to understand it. Moreover, it is
not only important that the model has been understood, but also who has
understood it.

Individual comprehension is defined as the goal that the individual actor
A; understands the part of the model relevant to that actor, i.e. Z; = M®.

The corresponding error class is incomprehension, meaning that the above
formula does not hold.

For a large model, it is unrealistic to assume that each audience member
will be able to comprehend the consequences of all the statements which are
relevant to them. Thus, comprehension as defined above is an ideal goal, just
like validity and completeness, and can often not be achieved. Again it will
be useful to introduce the notion of feasibility:

Feasible comprehension means that although the model may not have
been correctly understood by all audience members, i.e.

F) T\ MU (ML) =S # 0, (3.10)

there is no statement s € S; such that the benefit of rooting out the
misunderstanding corresponding to s exceeds the drawback of taking that
effort.

It is important to notice that the pragmatic goal is stated as compre-
hension, i.e. that the model has been understood, not as comprehensibility,
i.e. the model’s ability to be understood. There are several reasons for doing
so. First, the ultimate goal is that the model is understood, not that it is
understandable. Moreover, it is hard to speak about the comprehensibility
of a model as such, since this is very dependent on the process by which it
is developed, the way the participants communicates with each other and

110 3. Quality of Conceptual Models

various kinds of tool support.This is also the main reason for differentiating
between empirical and pragmatic quality.

3.9 Social Quality

The goal defined for social quality is agreement. Six kinds of agreement can
be identified, according to the following two orthogonal dimensions:

— Agreement in knowledge vs. agreement in model interpretation. In the case
where two models are made based on the view of two different actors, we
can also talk about agreement in model.

— Relative agreement vs. absolute agreement.

Relative agreement means that the various projections or models are consis-
tent — hence, there may be many statements in the projection of one actor
that are not present in that of another, as long as they do not contradict each
other. Absolute agreement, on the other hand, means that all projections are
the same.

Agreement in model interpretation will usually be a more limited de-
mand than agreement in knowledge, since the former one means that the
actors agree about what is stated in the model, whereas there may still be
much they disagree about which is not stated in the model so far, even if
it might be regarded as relevant by one or both participants. On the other
hand, agreement of models will be easier to check in practice especially if the
languages have formal syntax or semantics, although this is limited to the
situation as described above.

Hence, we can define

— Relative agreement in interpretation: all I; are consistent,
— Absolute agreement in interpretation: all I; are equal,

— Relative agreement in knowledge: all K; are consistent,

— Absolute agreement in knowledge: all K; are equal,

— Relative agreement in model: all M; are consistent,

— Absolute agreement in model: all M; are equal,

Metrics can be defined for the degree of agreement based on the number
of inconsistent statements divided by the total number of statements per-
ceived, or by the number of non-corresponding statements divided by the
total number of statements perceived.

Since different participants will have their expertise in different fields,
relative agreement is regarded to be more useful than absolute agreement.
On the other hand, the different actors must have the possibility to agree
and disagree on something, i.e. the parts of the model which are relevant to
them should overlap to some extent.

It is not given that all participants will come to agreement. Few decisions
are taken in society under complete agreement, and those that are are not

3.10 Knowledge Quality 111

necessarily good, due to group-think and other detrimental factors. To answer
this we introduce feasible agreement:

Feasible agreement is achieved if feasible perceived semantic quality and
feasible comprehension are achieved and inconsistencies are resolved by choos-
ing one of the alternatives when the benefits of doing this are greater than
the drawbacks of working out an agreement.

3.10 Knowledge Quality

From a standpoint of social constructivity, it is difficult to talk about the
quality of explicit knowledge. On the other hand, within certain areas, for
instance mathematics, what is generally regarded as “true” is comparatively
stable, and it is inter-subjectively agreed that certain persons have more valid
knowledge of an area than others. It is important to keep in mind that their
knowledge is only partial. The “quality” of the participant knowledge can
thus be expressed by the relationships between the audience knowledge and
the domain. The “perfect” situation would be if the audience knew everything
about the domain at a given time.

Knowledge completeness : D\ K = 0) (3.11)
and that they had no “incorrect” superstitions about the domain, i.e.,
Knowledge validity : K\ D =) (3.12)

To get a good enough knowledge about the domain, careful participant se-
lection based on stakeholder identification is necessary (if you have a problem
and can choose the participants), or alternatively, careful problem selection
(if the participants are given, but not the problem to be solved). In the case
that both participants and problem are more or less given, and not fitting too
well, some development in terms of training of the participants or modifica-
tion of the problem may be necessary. Just as for the other aspects of quality,
it will be possible to talk about feasible knowledge quality, meaning that the
knowledge of the audience could still be improved, but the benefit of im-
proving it through additional education or the hiring of additional experts or
including additional stakeholders will be less than the drawbacks of mistakes
made due to imperfect knowledge. In the view of social construction every
stakeholder might have something unique to contribute to the process of con-
ceptual modeling. On the other hand, it is obviously not feasible to include,
say, 500 end-users and 200000 indirect users (customers) of the organization
in constructing the requirements of a new application system.

3.11 Quality of Conceptual Modeling Languages

The discussion is based on the overview originally made by Sindre [344],
and extended by Seltveit [331]. Their results are rearranged to fit with the

112 3. Quality of Conceptual Models

categories in the framework for model quality. The given criteria are to some
extent a matter of belief and taste, but is generally based on results from
linguistics and psychology [6, 247, 352, 410].

In the original framework, distinctions were made along two dimensions.
First, it was distinguished between two main kinds of criteria:

— Criteria for the underlying (conceptual) basis of the language, i.e. the con-
structs of the language.

— Criteria for the external representation of the language, i.e. how these con-
structs are represented visually.

For each of these two parts, the following four main groups of criteria were
identified:

— Perceptibility: How easy is it for persons to comprehend the language?
This is related to the current and potential knowledge of the participants
and their interpretation of models in the language.

— Expressive power: What is it possible to express in the language? This
is related to the domain.

— Expressive economy: How effectively can things be expressed in the
language? This is also related to participant interpretation.

— Method/tool potential: How easily does the language lend itself to
proper method and tool support? This is related to the capabilities of
the technical actors in the audience.

In addition, Seltveit introduced reducibility as a separate category, meaning
what features is provided by the language to deal with large and complex
models.

We have regrouped the factors according to the framework for model
quality as follows:

— Domain appropriateness. Relates the language to the domain and vice
versa.

— Participant language knowledge appropriateness. Relates the participant
knowledge to the language.

— Knowledge externalizability appropriateness. Relates the language to the
participant knowledge.

— Comprehensibility appropriateness. Relates the language to the social au-
dience interpretation.

— Technical actor interpretation appropriateness. Relates the language to the
technical audience interpretations.

In Fig. 3.8 it is indicated how these relationships are related to the sets
in the quality framework.
Since participant interpretation is done on the basis of the current participant
knowledge, factors 2 and 3 will be closely intertwined.

3.11 Quality of Conceptual Modeling Languages 113

- Social
Participant
actor
knowledge) ’
interpretation
K i

Comprehensibility
Knowledge externalizability appropriateness
appropriateness /
Participant language
knowledge appropriateness

Modeling Model Language
domain externalization extension
D M L

Domain appropriateness

Technical actor

Technical interpretation
actor appropriateness
interpretation
T

Fig. 3.8. Coverage of this section

We will continue to distinguish between the underlying basis of a language
and its external representation since it will result in a clearer discussion. Dif-
ferent criteria in the different factors will often be contradictory, i.e. one
should expect to find some deficiencies for most conceptual modeling lan-
guages based on goals for language quality. On the other hand, this can be
addressed by how the language is used within a methodology, including the
use of specific modeling techniques.

3.11.1 Domain Appropriateness

Domain appropriateness can be describes as follows:
D\L=0 (3.13)

i.e. there are no statements in the domain that cannot be expressed in the
language. Obviously this means that different languages are more or less suit-
able for different problem situations. In Chap. 2.2 the existing perspectives
used and deemed necessary to support a wide range of modeling situations
was discussed. This general notion is parallel to what is termed expressiveness
in [280]. Domain appropriateness on more limited areas is discussed in detail
by many. An early comparison of data modeling languages is given in [301].
Davis gives an overview of requirements for languages for modeling external
system behavior in [79]. Embley et al. have a similar overview of aspects
of object-oriented modeling languages for analysis in [106]. livari compares

114 3. Quality of Conceptual Models

different object-oriented languages according to how good they are for mod-
eling structural, functional, and behavioral aspect in [178]. In [54], domain
appropriateness of languages for modeling workflow systems is discussed.

— Underlying basis: Ideally, the basis must be powerful enough to express
anything in the domain. On the other hand you should not be able to
express things that are not in the domain, if this makes you focus on
the wrong aspects. A typical example on this is the difference between
analysis and design models. A language which is very good for modeling
a design, might not be too good for analysis, since it will need to include
computerized information system specific constructs that if used in analysis
can result in a product rather than a problem-oriented model [106].
There is an infinite number of statements that we might need to make, and
these have to be dealt with through a rather small number of phenomena
classes due to the comprehensibility appropriateness, as will be discussed
below. This means that
— The phenomena must be general rather than specialized. This is parallel

to what is termed genericity in [280].

— The phenomena must be composable, which means that we can group
related statements in a natural way. When only domain appropriateness
is concerned, it is an advantage if all thinkable combinations are allowed,
each yielding a separate meaning.

— The language must be flexible in precision:

e To express precise knowledge one needs precise constructs. This means
that the language must be formal and unambiguous.

e At the same time, one need vague constructs for modeling vague
knowledge. To fulfill both requirements, the vagueness must also be
formalized (i.e. even the vague constructs must have a definite inter-
pretation — the constructs are called vague because their interpretation
is wide compared to the more definite constructs).

— External representation: The only requirement to the external representa-
tion is that it does not destroy the underlying basis. Thus,

— Every possible statement in the language should have a unique repre-
sentation in the basis (otherwise, the precision of the language will be
destroyed).

— Every possible statement in the underlying basis should have at least one
external representation (otherwise, the generality might be destroyed).

— Just like the phenomena, the symbols of the language must be compos-
able.

As indicated, only the mapping from symbols to phenomena needs to be

unique — it is all right to have several alternative external representations

for the same statement.

3.11 Quality of Conceptual Modeling Languages 115
3.11.2 Participant Knowledge Appropriateness

The overall goal here is that all the statements in the language models of the
languages used by the different participants are part of the explicit knowledge
of this participant.

— Underlying basis: This should correspond as much as possible to the way
individuals perceive reality. This will differ from person to person and
between persons in different groups according to their previous experi-
ence [136], and thus will initially be directly dependant on the given par-
ticipants in a modeling effort. When it comes to existing use of modeling
languages, Senn [332] reports that the level of awareness of structured
methods (i.e. using data and process modeling languages) is high among
CIS-professionals - as many as 90 percent of all analysts are familiar with
these methods, according to some estimates. Approximately half of the
organizations in the United States have used these methods.

On the other hand the knowledge of the participants is not static, i.e. it is
possible to educate persons in the use of a specific language. In that case
should one base the language on experience with languages for conceptual
modeling, and languages that have been used successfully earlier in similar
tasks. In this connection, it is interesting to look on experiments trying to
find which languages or perspectives persons find most easy to learn. Few
empirical studies of this kind have been performed. Vessey and Conger [381]
reports in empirical investigations among novice analysts that they seemed
to have much greater difficulty applying an object methodology, than a
data or process methodology. Process modeling was found easier to apply
than data modeling. For experienced developers the most difficult legacy
to overcome before being able to use object-orientation efficiently seems to
be the investment in persons whose experience and expertise are in other
ways of doing things. According to Kozaczynski, to become accepted, the
object-oriented way of thinking must become the natural way of thinking.
Now it presents a steep learning curve [205]. In Tempora [367], the experi-
ence was that whereas participants had small problems in learning to use
both the process modeling language and the main parts of the data mod-
eling language, the formal textual rule language was difficult for people
to comprehend. On the other hand, the phenomena of rules is generally
well-known: As stated by Twining [373], “One reason why the notion of
'rule ’ is such an important one not only in law, but in fields as varied as
linguistics, sociology, anthropology, education, psychology, and philosophy,
is that there is hardly any aspect of human behavior that is not governed
or at least guided by rules.” When it comes to the communication perspec-
tive, some experience related to learning speech-acts theory as part of using
tools such as the Coordinator [118] is presented in [48]. In many cases, the
users found the linguistically motivated parts of the language difficult to
understand and apply. In other cases, this was not regarded as a problem.

116 3. Quality of Conceptual Models

When it comes to actors and roles, we believe these phenomena classes to
be easy to comprehend based on their widespread use in e.g. organizational
diagrams.

Another important point in this connection is that it should be possible
to express inconsistencies and dispute in the language since inconsistency
between how people perceive reality is a fact of life which is useful to
represent so that these can be revealed and discussed explicitly.

— External representation: The external representation of different phenom-
ena should be intuitive in the sense that the symbol chosen for a particular
phenomenon somehow reflects this better than another symbol would have
done. Also this is partly dependent on the audience, even if general guide-
lines might be devised. For instance, it can be useful to represent areas in
a model that is not complete using a specific notation such as the use of
wiggly lines [132] or amoeba shapes [344].

3.11.3 Knowledge Externalizability Appropriateness

Knowledge externalizability appropriateness can be describes as follows:
K\NL=0 (3.14)

i.e. there are no statements in the explicit knowledge of the particpant that
can not be expressed in the language. This focuses on how relevant knowledge
may be articulated in the modeling language. This is clearly linked to concepts
like ”articulation work” and ”situated action” and the ongoing debate in
Computer Supported Cooperative Work (CSCW) whether actual work can
be captured in a model, or whether such a model always will be a post-hoc
rationalization [355]. This aspect of language quality will not be looked into in
detail in this paper. Again this mean is primarily supporting the achievement
of physical quality.

3.11.4 Comprehensibility Appropriateness

Similar to model interpretation, one can define language interpretation, thus
the set of possible statements that can be made in the language that are
understood by the audience member. Ideally

L\NZ=10 (3.15)
i.e. all the possible statements of the language are understood by the partic-

ipants in the modeling effort using the language.

— Underlying basis:
— The phenomena of the language should be easily distinguished from each
other.

3.11 Quality of Conceptual Modeling Languages 117

— The number of phenomena should be reasonable. If this has to be un-
comfortably large, they should be organized hierarchically, making it
possible to approach the conceptual framework at different levels of so-
phistication. This hierarchical organization should in itself be natural,
cf. the participant knowledge above.

— The use of phenomena should be uniform throughout the whole set of
statements possible to express within the language. Using the same con-
struct for different phenomena or different constructs for the same func-
tion depending on the context will tend to make the language confusing.

— The language must be flexible in the level of detail:

e Statements must be easily extendible with other statement providing
more details.

e At the same time, details must be easily hidden.

This means that the language should include abstraction mechanisms.

— Separation of concerns: It is possible to divide the models made in the
language in natural parts, to be able to support work division in the
sense that the individual participants can concentrate on the areas they
are interested in.

Whereas the domain appropriateness concerns what we are able to ex-
press, expressive economy concerns how briefly things can be expressed,
i.e. how many constructs you need to make the statements you want to
make. Introducing one construct for each possible statement would make
every statement brief, but the number of constructs would be infinite. Since
it is necessary to keep the number of construct at a reasonable level for
people to be able to learn the language, a good expressive economy cannot
be based on defining new constructs for everything. Instead

— The most frequent kinds of statements should be as brief as possible.

— The most important kinds of statements should be as brief as possible.

— External representation:

— Symbol discrimination should be easy. This means that it should be easy
to see the difference between the various symbols of the language.

— The external language should be as consistent as possible, in the sense
that symbol use should be uniform, i.e. a symbol should not represent one
phenomenon in one context and a completely different one in another.
Neither should one use different symbols for the same phenomenon in
different contexts.

— One should strive for symbolic simplicity — both concerning the primitive
symbols of the language and the way they are supposed to be connected.
If the symbols themselves are visually complex, models containing a lot
of symbols will be even more complex, and thus difficult to comprehend.

— The use of emphasis in the external language should be in accordance
with the relative importance of the statements. Factors that have an
important impact on visual emphasis are the following:

118 3. Quality of Conceptual Models

e Size (the big is more easily noticed than the small). On the other hand,
nodes in a diagram should not have very different size.

e Solidity (e.g. bold letters vs. ordinary letters, full lines vs. dotted lines,
thick lines vs. thin lines, filled boxes vs. non-filled boxes).

e Difference from the ordinary pattern (e.g. slanted letters or a rare
symbol will attract attention in a model of ordinary ones).

e Foreground/background (if the background is white, things will be
easier noticed the darker they are).

e Color (red attracts the eye more than other colors).

e Change (blinking or moving symbols attract attention).

e Pictures vs. text (pictures usually having a much higher perceptibil-
ity, information conveyed as such will be emphasized at the cost of
information conveyed textually).

e Position (looking at a diagram, people tend to start at its middle).

e Degree (nodes able to connect to many others will attract attention
compared to nodes making few connections).

Areas such as size and color might also be model-specific, in case the

modeling tool enables resizing etc. Emphasis is a very powerful mecha-

nism for facilitating comprehension of models, but it can easily be over-
done.

— Composition of symbols can be made in a aesthetically pleasing way, such
that one can enable the creation of models with few crossing edges and
short edges. The possibility of model redundancy can also be important
in this respect.

— Navigation: Does the external constructs allow for nice ways of filtering,
i.e. making various selections concerning which statements to show and
which to hide, and browsing, i.e. moving between related symbols in a
model?

— Grouping of related statements: Does the language have constructs to
support the grouping of related statements?

Graphical styles of representation have some important advantages over
text and tables when it comes to enhancing participant interpretation based
on the possible use of secondary notation, i.e. the use of layout and percep-
tual cues such as adjacency, clustering, alignment, and white space [303].
At the external level, expressive economy is concerned with how many
symbols one need to use to express the statements of the model. As the
requirements of the previous item suggest, it will usually be the case that
the things easily expressed conceptually will also be easily expressed ex-
ternally, and the things which are complicated in the underlying basis will
also have to be complicated externally.

However, the basis and the external representation of a language should

not necessarily be the same. A good external representation should always

have an expressive economy better than that of the basis. This is because

3.11 Quality of Conceptual Modeling Languages 119

the external representation has many possibilities that the underlying basis

does not have:

— Omission of symbols that are understood in the context.

— Special symbols can be defined for constructs which are frequent (or
important).

— Multiple mentioning of the same phenomena is unavoidable at the ba-
sis level. At the external level, such multiple mentioning can often be
avoided.

Of course, there are some pitfalls to avoid.

— Blank symbols, i.e. symbols that do not contain any information for
anyone.

— External redundancy, i.e. showing the same phenomena in several differ-
ent ways in the same external representation.

Diagrams have a significantly larger potential for expressive economy than

tables or text. On the other hand, it is impossible to convey everything di-

agrammatically. Thus, the best thing to do for expressive economy is to try

to express the frequent and most important statements diagrammatically
and the less frequent textually.

Another aspect in connection to comprehensibility appropriateness is that
of liberality [280], being defined as the degree of freedom one has when mod-
eling the same domain. On the one hand, high liberality is useful, since it
make it possible to rephrase a model in many different ways. On the other
hand, liberality might cause confusion since it might be more difficult to see
the similarities of two models. The use of the view integration technique as
presented in Chap. 7 is one way of addressing this problem.

3.11.5 Technical Actor Interpretation Apropriateness

— Underlying basis: For the technical actors, it is especially important that

the language lend itself to automatic reasoning. This requires formality
(i.e. both formal syntax and semantics being operational and/or logical),
but formality is not necessarily enough, since the reasoning must also be
fairly efficient to be of practical use. This is covered by executability.
On the other hand, a model expressed in natural language can also be
useful from this point of view as techniques for natural language under-
standing [127] are improved. As an example, Moulin and Rousseau de-
scribes a system which constructs formal rules automatically from regu-
lation texts [265]. In ALECSI [57, 316], a natural language description is
automatically translated into a simple semantic net using a set of standard-
ized sentence patterns. VDM models have been developed from structured
analysis models [125], and TELL (a language based on temporal logic)
models from larger bodies of NL text [321].

— Information hiding constructs: Encapsulating parts of the model limits its
access from other components, i.e. to create independent parts. This is

120 3. Quality of Conceptual Models

a useful property when the models are used to generate the application
system, and thus simplifies testing. It is also useful when one want to focus
on only some part of the model.

Techniques taking advantage of the technical appropriateness of a lan-
guage will be discussed in the next three chapters.

3.12 Quality of a Software Requirements Specifications
(SRS)

As mentioned in the introduction of the chapter, Davis et al. summarizes the
work on quality attributes for a software requirements specifications (SRS),
giving the most comprehensive list of such properties in literature in [81].
The paper also includes proposals for metrics and weights for the different
properties. The following properties are discussed by Davis:

— Unambiguous

— Complete

— Correct

— Understandable

— Verifiable

— Internally consistent
— Externally consistent
— Achievable

— Concise

— Design independent

— Traceable

— Modifiable

— Electronically stored
— Interpretable

— Prototypable

— Annotated by relative importance
— Annotated by relative stability
— Annotated by version
— Not redundant

— At right level of detail
— Precise

— Reusable

— Traced

— Organized

— Cross-referenced.

An SRS can be looked upon as being either a model of the perceived
future IS, or the perceived future CIS without locking it to one specific im-
plementation. In either case, the domain also involves statements about the

3.12 Quality of a Software Requirements Specifications (SRS) 121

resource constraints for this particular development effort, together with al-
ready baselined documents and models created earlier in the development
effort.

In an SRS, one usually use a mix of conceptual models and natural lan-
guage text, thus it is necessary to include quality means for both kinds of mod-
els in combination. Thus, in addition to our own work and the work of Davis,
we apply work done on quality for textual models /citeFabbrini:98. One im-
portant aspect when discussing requirements models, is that they are meant
to be understood by persons with very varying background (compared to e.g.
design models which are normally only used by persons with detailed soft-
ware development knowledge). We discuss means within each quality level in
detail, starting with those areas that are specifically mentioned by Davis. We
have highlighted these properties in boldface when positioning them within
the quality framework below. There will be some overlap here with the gen-
ral discussion earlier in the chapter, and this is done for completeness of the
coverage in this chapter.

3.12.1 Physical quality of an SRS

The only property in this area mentioned by Davis is that the SRS should
be electronically stored. This is covered by the persistence mean for ad-
dressing the physical quality aspect of internalizeability. Important means for
achieving this are using modeling languages that are appropriate for the do-
main and participant knowledge as discussed above under language quality.
An important aspect in relation to a requirement specification is that the lan-
guages used should not put unneccesary constraints on the technical solution.
Areas in the discussion of Davis that potentially influence this discussion are:
Design independent, Traceable, Annotated by relative importance,
Annotated by relative stability, Annotated by version, and Precise.
Since these areas are not always covered and mandated as an integral part
of the language, we will return to these areas in more detail as part of se-
mantic quality below. One important activity in this area is the adaptation
of the meta-model of the language used to suit the domain. This involves
both adding concepts, but also removing concepts (temporarily) from the
language if they are not relevant for the modeling of the particular domain.
Internalizeability on the physical level has two primary means, persistence
and availability: Many of the general activities in connection with physical
quality are based on traditional database-functionality using a repository-
solution for the internal representation of the model. In addition, it is re-
garded necessary for advanced tools for requirement specification to include
functionality such as version control and configuration management, that are
not normally found in conventional DBMSs.

122 3. Quality of Conceptual Models

3.12.2 Empirical quality of an SRS

Davis covers this area with the property understandable: An SRS is un-
derstandable if all classes of SRS readers can easily comprehend the meaning
of all requirements with a minimum of explanation. An important factor in
achieving this is language quality aspects of the modeling languages that have
been used such as comprehensibility appropriateness. The property Concise
(An SRS is concise if it is as short as possible without affecting any other
quality of the SRS) is a mean on this level, often being related to the ex-
pressive economy of the language being used. It can also be linked to overall
size limitation of the SRS. To further make Davis’ goal more concrete, the
same guidelines apply as for diagrammatical or textual models in general
when it comes to empirical quality. For informal textual models, a range of
means for readability has been devised, such as the readability index. For
computer-output specifically, many of the principles and tools used for im-
proved human-computer interface are relevant at this level. Other general
guidelines regard not mixing different fonts, colors etc. in a paragraph being
on the same level within the overall text. Another set of techniques which is
often useful here, are those devised within information theory. For graphical
models in particular, layout modification is found to improve the comprehen-
sibility of models.

3.12.3 Syntactic quality of an SRS

This area is not really addressed by Davis, although some of the aspects on
the semantic level can easily be reduced to syntactic issues by mandating
certain aspects to be part of the language (e.g. priority, version, and stability
information). Since Davis does not mention this explicitly as a mean, we will
treat these properties as part of semantic quality. The main mean on this
level is the use of a language with formal syntax (also mentioned by Davis),
in which case it can be possible to provide different types of tool support to
achieve syntactic quality. To assure the syntactic quality of the model, syntax
checks should be provided as an integral part of the modeling support. The
checks may be carried out along two main directions.

1. Error prevention, adapting the principle of syntax-directed editors, mak-
ing it impossible to make certain types of syntactic errors.

2. Error detection, with explicit checking being enforced by the user and
the check both detects and report existing errors, or also suggest how to
correct the error. Errors due to syntactical incompleteness usually have
to be checked in this fashion.

3.12.4 Semantic quality of an SRS

Most of the properties discussed by Davis concerns semantic quality. It is
important to notice that these quality properties have been suggested under

3.12 Quality of a Software Requirements Specifications (SRS) 123

the assumption of an objectivistic world-view. When comparing them with
validity and completeness as we have defined them, we thus do this under
the presumption that the modeling domain is inter-subjectively agreed among
the members of the audience.

First, when looking upon semantic quality relative to the primary domain,
we have the property Complete. An SRS is complete if

1. everything that the software is supposed to do is included in the SRS

2. Responses of the software to all realizable classes of input data in all
recognizable classes of situations are included.

3. All pages numbered, all figures and tables numbered, named, and refer-
enced; all terms defined; all units of measure provided; and all referenced
material present.

4. No sections marked To be determined.

The first point is the same as our measure of completeness, whereas achieving
the second is supported through the modeling activity of using the driving
question technique. Item 3 and 4 on the other hand is a kind of incom-
pleteness that potentially is easier to deal with. This can be done either by
manually checking for such situation after including them as part of a stan-
dard document-structure to be followed for the SRS, or by including such
aspects as part of the syntax of the modeling language. In this way, one is
able to reduce an apparent semantic problem into one of checking for syntac-
tic completeness and validity.

Correct: An SRS is correct if and only if every requirement represent
something required of the system to be built. This is the same as validity.

The property internally consistent (An SRS is internally consistent if
and only if no subset of individual requirements stated therein conflict) is
subsumed by the combination of validity and completeness since an incon-
sistency must be caused by at least one invalid statement or the lack of a
statement that are to sort out the inconsistency. To illustrate, consider the
case in which you must model an organization’ s business rules for imple-
menting these in an information system. Suppose the system must account
for the rule If a company has been our customer for more than 10 years, the
customer status should be high priority and the rule If a customer has been
late with payments more than three times, the customer status should be low
priority. But what if a company who has been the customer for 12 years is
late with payments more than three times? You could decide to change the
first rule to rate the customer as medium priority or the second to more than
four times. Either of these two actions would mean that the original rules
were invalid. On the other hand, you might decide that both rules are valid,
and add another rule if there are contradictory rules about customer status,
the sales manager should resolve the issue, which requires the system simply
to notify someone. Adding a rule to resolve a contradiction would mean that
the original model was incomplete because it had no such rule. Davis suggests
using languages with formal syntax and semantics to address inconsistency,

124 3. Quality of Conceptual Models

a mean for semantic quality also proposed by us. Note that semantic con-
sistency checking might only detect inconsistencies, it will be up to human
judgment if the consistency is because of invalidity or incompleteness of the
model.

Another property being either a matter of incompleteness or invalidity
relative to the primary domain is precise (An SRS is precise if and only if
(a) numeric quantities are used whenever possible and (b) the appropriate
levels of precision are used for all numeric quantities). The first aspect is
covered by completeness. If the granularity of precision is too high, this can
also be regarded as incompleteness, whereas if it is too low, there is a case of
invalidity.

Properties related to the pre-existing context are:

— Traced (An SRS is traced if and only if the origin of each of its require-
ments is clear) is subsumed by completeness since such links to other mod-
els and/or sources of the requirements should be captured in the model if
they are deemed relevant.

— Externally consistent (An SRS is externally consistent if and only if
no requirement stated therein conflict with any already baselined project
documentation). Statements within such documentation will be part of the
pre-existing context; thus, the same can be said about external consistency
as was said about internal consistency above.

The following properties are related to completeness and validity relative
to the purpose context.

— Annotated by Relative Importance: An SRS is annotated by rela-
tive importance if a reader can easily determine which requirements are of
most importance, which are next most important etc. Since this is needed
to allocate resources sensibly, and determine priorities when budgets are
inadequate, this is part of completeness.

— Annotated by Relative Stability: An SRS is annotated by relative
stability if a reader can easily determine which requirements are most likely
to change, which are next most likely etc. Since this is needed for designers
to know where to build in flexibility, an SRS that is not annotated in this
way is incomplete.

— Annotated by Version: An SRS is annotated by version if a reader can
easily determine which requirements will be satisfied in which version of
the product. When relevant, the lack of this information is also an example
of incompleteness.

On the above three aspects, if it is decided that the language for model-
ing being used should contain such information (e.g. priority information
in QFD [25] or deontic operators in a rule language [213]), the lack of this
can rather be looked upon as an example of syntactic incompleteness than
semantic incompleteness.

3.12 Quality of a Software Requirements Specifications (SRS) 125

— Traceable: An SRS is traceable if and only if it is written in a manner
that facilitates the referencing of each individual statement. This indicates
requirements to the language to be used for modeling, thus if the decided
language include these kind of aspect, a requirement specification missing
them would be syntactically incomplete. If these aspects are not formally
included in the language, one needs to treat them as problems of semantic
completeness.

— Verifiable: An SRS is verifiable if there exist finite, cost effective tech-
niques that can be used to verify that every requirement stated therein is
satisfied by the system to be built. This is partly related to completeness,
especially when the requirement is difficult to verify because of ambigu-
ity (see also below). Problems with verifiability because of lack of precision
are discussed under the property 'precise’. When verifiability is problematic
because of undecidability, this should be explicitly stated if it is relevant.

— Achievable: An SRS is achievable if and only if there could exist at least
one system design and implementation that correctly implements all the
requirements stated in the SRS. Since it is part of the purpose of an SRS
that it should be transformed (usually manually) into a computerized in-
formation system, an SRS that is not achievable is invalid. This specific
kind of invalidity calls for specific means such as proof of concept through
prototyping.

— Design-independent: An SRS is design-independent if and only if there
exist more than one system design and implementation that correctly im-
plements all requirements stated in the SRS. This is covered by validity,
since if the SRS was not design-independent, it would be over-constrained,
and these extra constraints can be looked upon as invalid statements in an
SRS.

— At right level of detail: Requirements can be stated at many levels of
abstractions. The right level of detail is a function of how the SRS is being
used. Generally, the SRS should be specific enough so that any system
built that satisfies the requirements in the SRS satisfies all user needs, and
abstract enough so that all systems that satisfy all user needs also satisfy
all requirements. This indicate that the requirements specification need to
be complete, and not over-constrained, i.e. valid, as discussed earlier, thus
no new aspects are really included by this property.

Unambiguous: An SRS is unambiguous if and only if every require-
ment stated therein has only one possible interpretation. This is subsumed
by validity and completeness: If the model is consistent and valid, nothing
is wrong with having ambiguity, expect that you should state explicitly that
all alternative interpretations are intended. Without this explicit statement,
there is incompleteness related to the purpose context. Note that the property
"design independent’ in fact necessitate a certain degree of ambiguity. Davis
suggest the use of formal languages to address ambiguity, similarly to us in-
dicating that using modeling languages with a formal semantics is a mean

126 3. Quality of Conceptual Models

for achieving semantic quality. Some additional semantic means mentioned
as properties by Davis are:

Modifiable: An SRS is modifiable if its structure and style are such that
any changes can be made easily, completely and consistently. To improve the
semantic quality of a model, one needs to change the model. This includes
both the cases where the model is found invalid or incomplete in relation to
a stable domain, or when it is the domain that changes, e.g. when the re-
quirements to the system change. In connection to this, we have the property
Not redundant (An SRS is redundant if the same requirement is stated
more than once) Unlike the other properties, redundancy is not necessarily
bad. Redundancy can in fact increase pragmatic quality (see below). The
main problem of redundancy hits when SRS is changed. Thus, avoiding un-
controlled redundancy is a (secondary) mean to achieve modifiability.

3.12.5 Pragmatic quality of an SRS

Some other properties mentioned by Davis on this area are:

Executable/Interpretable/Prototypable: An SRS is executable, in-
terpretable, or prototypable if and only if there exists a software tool capable
of inputting the SRS and providing a dynamic behavioral model. To perform
the indicated activities, one obviously need tool support for models developed
in languages having an operational semantics, although the existence of the
tool support is not a quality feature of the model itself.

Organized: An SRS is organized if and only if its contents are arranged so
that readers can easily locate information and logical relationships among ad-
jacent sections are apparent. One way is to follow any of many SRS standards,
e.g. group by class of user, common stimulus, common response, feature, or
object.

Cross-referenced: An SRS is cross referenced if and only if cross-
references are used in the SRS to relate sections containing requirements
to other sections containing: Identical (i.e. redundant) requirements, more
abstract or more detailed descriptions of the same requirements and require-
ments that depend on them or on which they depend. As discussed earlier,
such links are needed to assure the comprehension of the overall model; thus
having them can be classified as a pragmatic mean. They are also related
to modifiability. Using e.g. hyperlinks and having advanced browsing capa-
bilities are useful tool support in this area. There are a number of other
activities that can support pragmatic quality, such as audience training, in-
spections and walkthroughs, model rephrasing, model filtering, animation,
explanation generation, and simulation.

3.12.6 Social quality of an SRS

Davis does not address this area specifically. Tool support in this respect is
most easy to device on achieving agreement in models created based on the

3.12 Quality of a Software Requirements Specifications (SRS) 127

internal reality of the participants that are to agree. One can also support the
specific process of achieving feasible agreement. Based on this, main activities
for achieving feasible agreement are model integration with specific emphasis
on conflict resolution between the models to be integrated. Argumentation
tools are also useful at this level.

3.12.7 Orthogonal Aspects

Finally, there is one of the properties suggested by Davis that can be looked
upon across all the semiotic levels namely Reusable: An SRS is reusable if
and only if its sentences, paragraphs, and sections can be easily adopted and
adapted for use in subsequent SRS. This is dependent on many factors:

— The model needs to have good physical quality i.e. be physically repre-
sented in a persistent form that is available to those who potentially will
want to reuse it.

— For reuse of semi-formal and formal models, Davis do not expect the actual
models to be reusable as is, but rather that their presence will cause the
next SRS writer to reuse the use of such modeling languages. For this to
be successful, the original models should be syntactically correct.

— In cases where one actually wants to reuse the model as is, it should have
a high semantic quality. For white-box reuse, the model need to be modifi-
able, and should also be comprehensible and comprehended, thus one need
to support techniques for achieving pragmatic quality. The model should
also be annotated with additional statements making it easier to find the
sought for model, thus influencing the completeness relative to the purpose
context of the model relative to support the need for reuse.

— Where existing models need to be compared with models developed in a
separate project, social means and techniques such as model integration
and conflict resolution can be useful to investigate to what extent the
solutions based on the model to be reused, should be reused.

The kind of overviews as those presented by Davis have some weaknesses.
Many of these have been addressed in the work by Davis, but still comparing
to our framework, we see that the properties are partly overlapping. Modifia-
bility is for instance related to redundancy, traceability, machine readability,
tracedness, and that the specification is organized and cross-referenced. The
problem appear partly because the list mixes goals and means to achieve
these goals and because some goals are unrealistic, even impossible to reach.
According to the first definition of complete, for example, a specification
should include everything that the software is supposed to do. Because cus-
tomers often do not know what they need and the requirements are socially
constructed, you cannot hope to build a complete specification. This is ad-
dressed in our framework with the notion of feasibility. It is indirectly ad-
dressed also by Davis by giving suggestions on standards for an SRS through
other of his properties, although he is not linking these up to the discussion

128 3. Quality of Conceptual Models

on completeness. Other important points when comparing the frameworks
are:

— Whereas Davis’ framework is largely objectivistic, built on the belief that
it is possible to state true, objective requirements to a CIS, we take into
account that the requirements to a CIS are constructed as part of the
dialogue between the involved participants. In this light, aspects such as
consistency and validation become more complex.

— We are able to discuss the relationships between the knowledge, models,
and understanding of the individual participants of the modeling effort, and
not only the relationships between the abstracted need of the customers
and the model in the form of an SRS on an aggregated level.

— The technical areas (physical, empirical and syntactic quality) are very
poorly covered by Davis. For pragmatic quality, only some of the many
means described in the literature in this area are mentioned.

— Davis does not discuss aspects of social quality. For instance, Pohl [305]
regard agreement as one of the three main dimensions of a requirement
specification process.

— Our framework is meant to be a general framework for the assessment of
quality of models in general. This is also the main weakness of it, since the
discussion easily becomes rather abstract and difficult to apply in practical
work. By including the properties of requirement specifications within the
framework as a specialization of the framework for this specific model type
as we have outlined here though, we get the better of two worlds. This is
specifically apparent in the area of semantic quality, where Davis helps us
to develop a much more detailed treatment.

3.13 Chapter Summary

We have in this chapter presented a framework for the understanding of
quality of conceptual models. Inspired by earlier discussion on quality of
conceptual models and Requirement specifications, model quality has been
divided into seven main areas:

— Physical quality: The relationship between knowledge of those performing
modeling and the model.

— Empirical quality: The relationship between the model and another model
containing the same statements being somehow regarded as better through
different arrangement or layout.

— Syntactic quality: The relationship between the model and the language
used for modeling.

— Semantic quality: The relationship between the model and the domain of
modeling.

— Perceived semantic quality: The relationship between the knowledge of the
modelers and their interpretation of the model

3.13 Chapter Summary 129

— Pragmatic quality: The relationship between the model and the modeller’s
interpretation of the model.
— Social quality: The relationship between different model interpretations.

Modeling techniques, being means to achieve syntactic, semantic, prag-
matic, and social quality will be discussed in the next four chapters. We will
here also discuss in more detail aspects of tool quality, requirements to tools
used in modeling to support techniques for the enhancement of model qual-
ity. One specific kind of means, using appropriate languages for the modeling
task at hand has been discussed in this chapter under the banner of language
quality, i.e. to what extent a language is appropriate to the knowledge of the
modelers, the domain to be modeled, and the interpretation of the model by
social and technical actors being involved i modeling. How to use the differ-
ent modeling techniques being presented in this book in concert is discussed
in Chap. 8 concluding the book by delving into the area of process quality.

In addition to be used for a framework of understanding, the quality
framework can also be used for the evaluation of conceptual modeling ap-
proaches as exemplified in [25, 54, 207]. What we are able to evaluate is
the potential for the modeling approaches to support the creation of concep-
tual models of high quality. The discussion on language quality can be used
directly for evaluation purposes. An example of this is given in Appendix A.

130 3. Quality of Conceptual Models

4. Means for Achieving Syntactic Quality

We have increased the font size in Fig. 4.1 of the relationship of the quality
framework that is looked into in this chapter.

The goal for syntactic quality is syntactical correctness, meaning that
all statements in the model are according to the syntax and vocabulary of
the language.

To assure the syntactic quality of the model, syntaz checks should be
provided as an integral part of the modeling support. The checks can be
viewed as the simplest verification techniques and may be carried out along
two main directions:

— FError prevention: This type of checks adapts the principles of syntaz-
directed editors. Thus, only modeling constructs that are defined in the lan-
guage’s vocabulary are available through the editor. Also, when a drawing
session violates a syntax rule of the language, the modeling session should
be temporarily interrupted in order to restore the legal model. This type
of checks is controlled by the tool.

— FError detection: During a modeling session, some syntactical errors— syn-
tactic incompletenesses — should be allowed on a temporary basis. For
instance, although the DFD language requires that all processes are linked
to a flow, it is difficult to draw a process and a flow simultaneously. Syntac-
tical completeness has to be checked upon user’s request. So, in contrast to
implicit checks where the tool is “forcing” the user to follow the language
syntax, explicit check can only detect and report on existing errors. The
user has to make the corrections.

By distinguishing between these types of syntax checks, modeling free-
dom is somewhat encouraged. Throughout the modeling process, the tool
will accept some syntactical errors, but these can be detected upon the user’s
request. The developer is free to construct the model unless syntax rules
are directly violated. Modeling freedom has been discussed by Feather [113].
Although error-free models are the major goal of model quality assurance,
some errors can be advantageous to have on a early in development. Too
much focus on model quality at this stage might hamper the creativity of the
modeling process. This idea is summed up in what is termed 'The Heisen-
berg Uncertainty Principle of CASE’ [168]: “High levels of inconsistency and

132 4. Means for Achieving Syntactic Quality

incompleteness are permissible if they are confined to a small region of space
and time.”

A third syntactic mean is error correction. Error correction - to replace a
detected error with a correct statement - is more difficult to automate. When
implemented, it usually works as a typical spell-checker, giving hints to the
correct modeling structure, but leaving it up to the modeler to do the actual
change.

All syntactic means are easier if the languages used have a formal syntax.
There are several ways to describe the languages for conceptual modeling, to
among other things support error detection and prevention. We will discuss
this in more detail below.

Social
quality
- Social
Participant Perceived actor
knowledge semantic) .
K quality interpretation
i
Pragmatic
Empirical quality
quality
. Semantic SyntaCtIC
Modeling quality Model i Language
domain externalization qua!h‘y’ extension
D M L
Pragmfatic
quality
Technical
actor
interpretation
T

Fig. 4.1. Coverage of this chapter

4.1 Metalanguages for Syntax Specification

The expressiveness of the metalanguage used for specification of syntax and
semantics determines which languages can be defined, but the metalanguage
also determines the ease with which the specification is performed and un-
derstood. It has the same importance for the meta-model, as a conceptual

4.1 Metalanguages for Syntax Specification 133

modeling language has for its conceptual models. There are potentially many
languages suitable for syntax specification. Some of these are grouped and
presented below.

Backus-Naur Form [135]. This is a widely used language for specification
of programming language syntax, but can also be used for specification of
conceptual modeling languages. It exists in many variants, but common to
these is that they can be used to specify a class of grammars called context-
free phrase grammars (CFG). This is a subtype of phrase-structure grammars
(Sowa [352]), which generate sentences being built from hierarchies of phrases.

CFG’s are often used due to their simplicity, which makes parsing of
sentences relatively easy. A weakness of CFG’s is that they can not express
complex constraints. An example of its use is given in Fig. 4.2.

Data modeling languages. These provide a natural way of expressing ba-
sic language constructs and their interrelationships and properties. Both
Brinkkemper [40], Lyytinen [249], Sorenson [351], and many others use data
modeling languages for meta-modeling. A great advantage of data modeling
languages is the ease with which the language syntax is understood, at least
when the data model is graphical. Also, data models often provide straight-
forward mappings to database schemas, which means that large parts of the
storage structures for the tool supporting conceptual modeling can be eas-
ily derived. On the other hand, most data modeling languages offer limited
expressiveness for constraint specification. Another disadvantage is that, al-
though possible, data modeling languages are not that well suited to specify
languages with complex phrase structures.

Predicate Logic. Logic is a powerful language. Compared to data modeling
languages, it allows also complex constraints to be specified. The capabil-
ities of logic for meta-modeling is demonstrated by Brinkkemper [40] and
Falkenberg [110]. An obvious drawback of predicate logic is that it is less
understandable, and also it is not well suited to specify phrase-structure
grammars.

Combined Representation Languages. Some of these languages combine the
expressive power of data modeling languages, restricted versions of predi-
cate logic, and the possibility to model on the instance level. In the DAIDA
project [187], Telos [269] is used as a metalanguage, offering necessary
modeling constructs to be defined through meta-classes (i.e. classification-
mechanisms). In the AMADEUS project [72], a frame language is used to
represent a unified model of different conceptual modeling languages. Also,
Sowa’s conceptual graphs have been used for meta-modeling [115]. Although
these languages are very expressive, they are also unsuitable for specifying
phrase-structure grammars.

A Language for Representing Conceptual Modeling Languages. An
executable conceptual modeling language often uses expressions in accor-
dance with phrase-structure grammars. At the same time, their models are

134 4. Means for Achieving Syntactic Quality

often graphs with relationships between instantiated language constructs.
Data modeling languages are hence suitable for specifying these constructs,
their properties and relationships. We therefore propose the use of an in-
tegrated metalanguage, which combines a data modeling language with a
language for specification of CFG’s. In addition, we suggest use of typed first
order logic when the structural constraints of the data modeling language are
not sufficient.

Such a data modeling language is previously depicted in Fig. 2.35.

An extended BNF can be integrated with the data model by allowing the
types of construct properties to be strings generated by a particular non-
terminal. In this BNF, alternative productions are indicated by ’|’, repeated
productions (one or more, separated by commas) by {X}*, and possible pro-
ductions by [X]. Terminals are indicated by the use of hyphens or boldface
characters. Non-terminals placed within < > produces constants, most often
text strings. We use a typed first order logic to express further constraints.
Variables used in formulas range over constructs found in the meta-model,
and the dot-notation is used in order to access values of construct proper-
ties. This integrated metalanguage is sufficiently expressive for specification
of the syntax of executable conceptual modeling languages. It exploits the
advantages of its sub-languages.

A Meta-modeling Example. As an example, we want to define an exe-
cutable conceptual modeling language which is a straightforward extension
of the traditional DFD. DFD++ has the same basic constructs as the tradi-
tional DFD, but here, flows are allowed to have a numeric value. Rules can
be used to specify the values of output flows of processes, as a function of
the input flows of the process. These are very similar to entries of decision
tables, where conditions guard different alternative output expressions. Flows
from stores are assumed to be queries, and these are arithmetic expressions
involving the input flows to the store. Flows from external entities are simply
regarded as inputs of values from the user. Flows from processes to stores re-
sult in the store being updated with the new flow value, i.e. there is implicitly
a variable corresponding to the flow in the store. It is assumed that all input
flows of a process must have new unread instances in order to trigger the
process. A read flag indicates whether the last flow instance has been read
or not, for flows from entities and processes. A flow from a store is assumed
to always be available.

Portions of the meta-model for this language is depicted in Fig. 4.2. Some
properties of constructs, e.g. names of processes, have been omitted. Also,
some important constraints need to be added to make the meta-model com-
plete. As an example, a requirement must be made to assure that all input
flows to a store come from processes. This can be formulated in logic as
follows:

Vf: flowVs: store(f € s.inputs — Tp : process(f € p.outputs))

4.1 Metalanguages for Syntax Specification 135

contains decomposition
4@—
rule

Condexpr .
Flow from contains
Boolean process

inputs

Expression

store
enti

outputs

Boolean

| Store | Eﬁi‘i\'}”a' | | Process l—
Condexpr :='("Condition "’ Expression ’;’ Restcondexpr’)’
Restcondexpr ::= Condition ;" Expression ’;’ Restcondexpr | 'else’ Expression
Condition := Expression Relop Expression | Condition ’AND’ Condition |

Condition 'OR’ Condition | 'NOT(’ Condition *)’ | (" Condition ’)’

Expression := <Flow> | Expression Op <Flow> | (Expression)
Op HE Al S AN
Relop B S EA RS

Fig. 4.2. Portions of a meta-model for an executable DFD

A meta-model that is specifically geared towards the representation of
executional conceptual modeling languages have been created by Willum-
sen [398], and extended by Krogstie [207]. This is used in connection with
the execution of PPP models as will be discussed in more detail in Chap. 6.

The extended meta-model is shown in Fig. 4.3, and the main language
constructs and relationships are described briefly below.

— State component: Something that can be uniquely identified, and has an
associated state. Excluding executional aspects, the state of a system is the
aggregate state of all state components in the system. State components
correspond to entities, the static part of objects and actors, named variables
etc.

— Class: A class has a name, and consists of a set of state components which
have common properties.

— Attribute: A function which maps a state component to a value. The value
of all properties of a state component in a class constitute the state of that
state component.

— Type: An intentional description of state components. It has a name and
a definition.

— Type definition: Specifies a type in terms of other types through type
constructor like sets, aggregates etc.

— Condition: A logical sentence which refers to states of state components
and is either true or false in a given state.

136 4. Means for Achieving Syntactic Quality

i has applies_to
’ Modality H Rule }
Type
definition
involves
Subrule)
W Static rule i

Actor
entity

has

has_type

has

involves has fe i
sentence Attribute

precondition

: Condition

instance_of

begin_time
St{): described_by
refers

Dynamic
rule

k postcondition
pre . post- end_time
condition condition)
Internal j has been in described_by
event isa
. precede Class
has associated_with,
trigger input
| State member_of

output component

inserts,deletes,
Operation updates, refers

precede

External precede

source_of
event

isa Actor

Fig. 4.3. Meta-model for execution of conceptual modeling languages

— Static rule: Includes a condition which should hold in all states. It further
has a name, it specifies the situation in which the condition should be
evaluated, and it specifies what action should be taken if it is violated.

— State: As defined above, but including in addition a begin-time and an

end-time of the state.

— Role: Generally, behavior that can be expected by an actor by other actors.

Here it is the static description of the role which is represented.

— Dynamic rule: Causes state transitions in a pre-described manner. It covers

construct like process, rule, activity, method, etc.

— Sub-rule relationship: Links dynamic rules in a hierarchical rule structure,
i.e. it specifies control structures between dynamic rules. It has a name,

and it must have a specification.

— Operation: A specification of a state change or a query. It may insert,

delete, or update state components.

— External event: A state change imposed by the environment of the system.

The state change is related to two subsequent system states.

— Internal event: A state change imposed by a dynamic rule in the system.

— Actor: The initiator of external events.
— Actor entity: A generalization of role and actor.
— Rule: A generalization of state and dynamic rules.

— Modality: The modal status of a rule. Possible values are necessitation,
obligation, recommendation, permission, discouragement, prohibition, and

exclusion.

4.1 Metalanguages for Syntax Specification 137

The relationships in the meta-model are further explained in Table 4.1.

Table 4.1. Relationships in meta-model for general execution

Relationship

Explanation

applies_to(r,a)

associated_with (ie,dI)

deletes(o,sc)
described_by(c,a)
described by (r,c)
fill(a,r)
has_type(a,t)
has(t,td)
has(dr,sr)
has(dr,0)

has(r,m)
has_been_in(sc,s)
has_sentence(sr,c)
input(dr,sc)
inserts(0,s)
instance_of(s, t)
involves(td,t)
involves(sr,dr)
isa(cl,c2)
member_of(sc,c)
output(dr,s)
precede(01,02)
precede(eel,ee2)
precede(iel,ie2)
precondition(dr,c)
precondition(ie,c)
postcondition(ie,c)
postcondition(dr,c)
refers(o,sc)
refers(c,sc)
source_of(a,ee)
specified_by(ee,0)
trigger (ie,dr)
updates(o,sc)

A rule r applies to a set of roles and actors a.

Event ie is caused by the execution of dl.

Operation o deletes a state component sc from a class.
All members of class ¢ have attribute a.

A role r is described by a class c.

Actor a fill role r.

The value of a is in the extension of t.

Type t is defined through type definition td.

The complex dynamic rule dr has subrules in rel.sr.
Dynamic rule dr is simple, and o executes as part of dr.
A rule r has modality m.

State component sc has been or are currently in state s.
Static rule sr requires ¢ to hold in every state.

State component s is an input parameter to dr.
Operation o inserts a state component s into a class.
The state s is in the extension of ¢.

Type definition td involves t.

Sub-rule relationship sr involves sub-rule dr.

All member of class ¢l are members of class c2.

State component sc is a member of class c.

State component s is an output parameter from dr.
Operation ol is executed before operation 02
External event eel must happen before ee2.

External event iel must happen before ie2.

Condition ¢ must hold for dr to apply.

Condition c holds in the state when ie happens.
Condition c¢ holds in the state when ie has happened.
Condition ¢ must hold in the state dr terminates.
Operation o refers to a state component sc in a class.
Condition c involves reference to a state component sc.
The source of an external event ee is actor a.
Operation o is performed when ee is reported.

The event ie may trigger the execution of dr.
Operation o updates a state component sc in a class.

138 4. Means for Achieving Syntactic Quality

One can translate models written in the PPP languages and models writ-
ten in other languages such as Petri-nets and SQL into this language for fur-
ther execution. We will return to execution of conceptual models in Chap. 6.

Another use of language models is for so-called meta-models which are a
starting point for the repository support of a modeling tool. We use parts of
the model for PPP as example. The model is written using ONER, the data
modeling language of PPP.

Figure 4.4 shows a ONER-scenario which includes the meta-model in
connection to the rule and process modeling languages.

The main entities are:

— DRL-rule: A DRL-rule has an ID, a type (i.e. constraint, derivation rule,
action rule, predicate, non-functional or undefined), and a short-name. The
rule can be stated as a formal DRL-rule or as a natural language (NL)
expression or both. The DRL-rule can be further divided into the trigger,
condition (which can refer to a scenario of a ONER-model) and a (set of)
consequences. This is not indicated in the figure. In addition it can have
one of the five deontic operators, and can apply to a role or an actor. It is
also possible to capture which actor that has institutionalized the rule.

4.1 Metalanguages for Syntax Specification

Type " INTEGER
NTEGER Type INTEGER.
Rule- Name Name
relation STRING(n) NIncludedin_t—p_n— DRL-rule ,_WL}(j/*»STRING ul
Connective W m
! INTEGER p_n o >STRINGE
f1 INTEGER | !
/ STRING(n)
Related to .
Argument * .
STRING(n g fn Is asivc:;:}:ated Applies to p_n
p_n pn p1 p_1 p-n
Actor _— .
PLD Actor i Jﬂsmgnéﬂlzmg
- entity p_n
specification Rule-set ——» description o \
. 1
partition p_\
10-matrix \
. Role Actor
Process Timer Related
/ description description ‘n to
Module o1 T i Pl
= 1 .
p*\ Has capabilities Has capabilities
Is associated ibed b i
o (s associated | | oSy /[descrived by
; with n 1
on [p_n D! Status P Refer to
i \
b 1 n INTEGER
Reuseable_ | Solved by Process
process
‘ p_1 lllocuti
p71 — N ocullonaw
I Resultin p_n act
Specified Timer
by Propositional Dominant
‘ p_n content i claim*
Elow lllocutionary
p“n STRING point INTEGER
PPM e INTEGER
component artition | Store .
Described
by —p_n— Datatype
STRING(n Sink pn
p_n p_1
Access
Actor
Status bn p_n
n p_n
Support LA Actt.or partition Access Scenario
entity b1
‘ "
p_n Role p_1 Described
by

Fig. 4.4. Incorporating the use of rules and actors in the PPP meta-model

140 4. Means for Achieving Syntactic Quality

— Rule-set: The clustering of rules into rule-sets is necessary for general

S1.
S2.

S3.

S4.

Sé.

Sé.
S7.

Ss.

rule-relations to be specified. The rule-relation has a type, indicating the
type of relation (necessitate, obligates etc), a name, and a connective
(and/or/none). The related-to relationship links a relation with two rule-
sets, and can have an optional argument.

The capabilities of actors and roles are described by processes. For the
capabilities of an actor it is also possible to indicate the status, i.e. if they
are proven or only potential. An actor or role can be said to support a set
of PPM-components. An actor can access data described in a scenario of a
data model, and can be described by a set of data-types in addition to the
ones indicated through the link between the roles they fill, and how these
roles are described statically in the ONER-model. If an actor support a
store, it is implicitly given that the actor can access the data described
in the scenario for the store. An actor-entity (actor or role) can finally be
associated with a set of rules, used in model simulations.

PPM components can be process, timer, flow, store, sink, actor, and role.
Processes and timers are potentially associated with a process description
in the form of a rule-set, a PLD, or an i/o-matrix. Flows are optionally
connected to a set of illocutionary acts, for which one can indicate the
propositional content, the illocutionary point, and the dominant claim. An
illocutionary act can further be related to one or more rules.

An example of more detailed rules for ports in PPM is given below:
Every process has at least one CIP and at least one COP;

A CIP has at least one triggering input, and a COP has at least one terminating
output;

The i/o condition of a process must ensure that every CIP satisfies at least one
COP, meanwhile any COP must be satisfied by at least one CIP.

We say that a CIP satisfies a COP if and only if

In the CIP, either all of the triggering non-conditional inputs (if any) or
any of the conditional triggering inputs, along with all non-triggering and
non-conditional inputs (if any), satisfy the necessary conditions for all non-
conditional outputs in the COP. Furthermore, if there is no terminating and
non-conditional output in the COP, then those inputs must satisfy at least one
conditional and terminating output in the COP;

The i/o condition of a process must not include a conjunction term of inputs
that can not be in any CIP of the process;

The set of the members of a canonical port can mot be a subset of another
canonical port;

Only a singular input/output can be a triggering/terminating input/output;

If in the i/o condition of a process all conjunction terms of an output contains
at least one conditional input, then the output must also be a conditional output;

If a group of inputs are the triggering inputs of a CIP for the higher level
processes, then in the process network that is the result of a decomposition of

4.2 Chapter Summary 141

the process, they must also be the triggering inputs of a CIP for one sub-process
in the network; if a group of outputs are the terminating outputs of a COP for
the processes, then in the process network , they must also be the terminating
outputs of a COP for one sub-process in the network.

Error prevention is supported by the PPP tool. The PPP editors only
provide the modeling constructs that are defined in the PPP language. Thus,
syntactic invalidity in the PPP model are avoided. Moreover, the PPP editors
resemble syntaz-directed editors. Drawing sessions that violate the language
grammar are disrupted in order to restore the legal model.

In addition to this implicit syntax checking of PPM model, the tool pro-
vides checks for syntactical completeness — the model is temporarily lacking
constructs with respect to the PPM syntax. These checks can be invoked by
the user. Thus, they are explicitly supported by the tool.

In Fig. 4.5 a PPM model is shown. At this stage the model is still syntac-
tically incomplete. For instance, process P1 is lacking output flows, whereas
actor Al is lacking a name. By checking the syntactical completeness of the
model, the tool will respond with error messages shown in the figure.

As indicated in Fig. 4.5, the scope of checks can be decided by the user.
In addition to flow completeness and object naming, the model can also be
checked for (1) triggering/terminating flow properties, (2) input and output
ports, (3) flow and store content, and (4) decomposition of processes. Since
the modeling session has not yet addressed these issues, such checks are rather
unnecessary at this stage, though.

;
- : r? Syntactical completeness checks
Actor Al is lacking
name Transaction| Process @ Name
transactior _Fl_lt_)w re_Iati/ons o
riggering/termination
— O Port
O Flow content
- Customer O Process content
O Store content

Process P1 is lacking
output flows

Fig. 4.5. Syntactical completeness checks of PPM model

Customer_view

4.2 Chapter Summary

Syntactic quality is the correspondence between the model M and the lan-
guage extension £ of the language in which the model is written. There is only
one syntactic goal, syntactical correctness, meaning that all statements
in the model are according to the syntax and vocabulary of the language.

142 4. Means for Achieving Syntactic Quality

Syntax errors are of two kinds:Syntactic invalidity, in which words or
graphemes not part of the language are used and syntactic incomplete-
ness, in which the model lacks constructs or information to obey the lan-
guage’s grammar.

Syntax checks can be viewed as the simplest verification techniques and
may be carried out along three directions: Error prevention, error detection,
error correction. Although simple, as has been shown in Chap. 3.12, semantic
problems might be transferred into syntactic problems by extending the lan-
guage in appropriate ways on the danger of closure. All syntactic means are
easier if the languages used have a formal syntax, and we have in the chap-
ter indicated different ways of describing language for conceptual modeling
formally.

5. Means for Achieving Semantic Quality

We have increased the font size in Fig. 5.1 of the relationships of the quality
framework that are looked into in this chapter.

Semantic quality is the correspondence between the model and the mod-
eling domain. The framework contains two semantic goals; validity and com-
pleteness. Perceived semantic quality is similarly correspondence between the
actor interpretation of a model and his or hers current knowledge of the do-
main.

Activities for establishing higher semantic quality, are statement inser-
tion and deletion. An update is a deletion followed by an insertion. State-
ment insertions and deletions can obviously result in lower semantic quality.
Statement insertion and deletion can generally be looked upon as meaning
updating transformations, which can be done either manually or automati-
cally. An examples of the latter is the situation with a syntactically complete
delete as discussed in Chap. 3. Other examples are the evolution transfor-
mations described in [189], and work within goal-oriented modeling [270].
Of specific importance is direct model reuse (being a specific type of state-
ment insertion). This can either be the reuse of a previous model of a similar
domain, or might be a translation of a previously baselined model.

Consistency checking is another activity here. To be able to do consistency
checking, the model must be made in a formal, preferably logical language,
and to enable and assess the impact of updates, it should be modifiable.
This includes properties such as structure, locality of changes, and control of
redundancy. Consistency checking can be looked upon as one of several types
of model testing which is beneficial at this level.

A wide range of modern conceptual modeling techniques start out by
verbalizing sample forms, cases and so on [368]. The verbalizations resulting
from this step are then used for the development of the first version of the
model. A technique for further elaboration on the model is the use of driving
questions based on the already existing model as used in Tempora [389]. For
feasibility analysis, however, there is little in way of tool support, except when
the domain is already described in another model, or a standard has been
agreed upon. General tools are difficult to develop for the simple reason that
the domain and audience are beyond automatic manipulation. The means for
achieving a high perceived validity and completeness are similar to the ones

144 5. Means for Achieving Semantic Quality

for traditional validity and completeness, with the addition of participant
training.

Using a formal language one can in a sense translate a semantic problem
into a syntactic one, but this sets additional requirements to the domain
appropriateness of the language.

We will in this chapter discuss the following techniques in more detail:

— Consistency checking based on a logical description.
— Consistency checking based on constructivity.
— The use of driving questions to improve completeness.

Social
quality
N Perceived Social
Participant . actor
know;?dge —semantic interpretation
quality !
Pragmatic
Empirical quality
quality
Semantic
Modeling qua"ty Model Séﬂ:ﬁsc Language
domain externalization extension
D M L
Pragmpatic
quality
Technical

actor
interpretation
T

Fig. 5.1. Coverage of this chapter

5.1 Consistency Checking

There are two main approaches for formal specifications as the basis of con-
sistency verification:

— The algebraic specification approach specify a system as a set of abstract
data types (ADTs). The theory of an ADT consists of a set of symbols

5.1 Consistency Checking 145

(sorts and operations) (signature) and a collection of formulae (the ax-
ioms of the theory); the interpretation of the theory is a many sorted
algebra [39, 101, 322, 402]. The specification is a set of theories and the
relationships between them. This approach has been applied in the object-
oriented systems [116, 196, 333, 334, 335, 394];

— The logical theory approach, on the other side, treat the schema of a
database and the associated operations on it as one logical theory. This
approach has also been applied widely [128, 182, 282, 320].

Both approaches have advantages. Here we present the logical approach.
The logical view supports the idea of a global state of a database [202].
Kung [218] has provided a set of methods for consistency verifications on
information system specifications including static constraints, operation spec-
ifications and temporal constraints along with the algorithms to check if the
specification is decidable with respect to its consistence.

One can not expect to express all parts of a conceptual model as one logical
theory and use the logical inference mechanism to verify the consistency of
the system model.

5.1.1 Formal Verification of Data Models

It has been shown in [404] how a semantic data model such as one written
in ONER can be translated into a logical theory, i.e. a first order and many
sorted logical theory '. In turn the consistency of the theory can be verified
formally by means of logical inferences.

Many first order theories are only semi-decidable, i.e., when they are in-
consistent, the inconsistency can be found within finite steps of logical infer-
ences. However, if they are consistent but not logically valid, i.e., there are
some but not all interpretations on which the theories are true, then there is
no effective method to prove the consistency within finite number of steps.

The verification method for ONER is based on the work of Lewis and
Kung [218, 217, 230, 231], in which they defined the weakest condition to
determine that if the consistency of a set of clauses is decidable, and proposed
the methods to check the condition by means of graph theory. In addition,
the consistency of some decidable clauses can be conducted directly, whereas
other decidable clauses have to be checked by resolution.

Lewis’ work. Generally speaking, the consistency of a theory, i.e., a set
W of Well-formed formulaes (wf fs), is undecidable. However, if certain re-
strictions are imposed upon W, then the consistency of W can be effectively
determined. The problem is that, if the restrictions are too strong, then many
interesting clauses of wf fs will be excluded. A practical method must let its
restrictions be as weak as possible.

1 In a many sorted logic the universe of discourse is divided up into subsets and
variables are restricted to range over these subsets, called sorts, rather than the
whole universe as is classically the case

146 5. Means for Achieving Semantic Quality

A weak condition for restricting a set W of wffs is found in Lewis’
work [230]. This condition is defined in terms of the clause form of W. A
wff is said to be in clause form if it is of the form

arVasV---Va,
where «; (i = 1,---,n) is either an atomic formula or the negation of an
atomic formula. «; is also called a prime formula or a literal.

Definition 5.1.1.1: Let S be a set of clauses. An S-link is an ordered
triple < C, a, 8 >, where C is a clause and «, § are distinct literals in C'. An
S-chain is a sequence < C1, 1,01 >, -, < Cpn, ap, By > of S-links such that
fori =1,---,n — 1, §; is unifiable with ~ «;;1; this S-link is said to have
length n. If 3, is unifiable with ~ a1, then this S-chain is called an S-cycle.

For example, let S consists of the following set of clauses

~ Ai(z1) V Az (21, fi(21))
~ Ai(22) V As(fo(22),a1)
~ Aa(w3,y3) V As(ys3)

~ As(ya)V ~ A3(f2(ys),a1)

According to definition 5.1.1.1, S has the following 8 S-links, since the ex-
ample has 4 clauses each of which has two literals:

< Cy,~ A (z1), As (1, f1(21)) >
< Oy, As(1, fi(z)), ~ Ar(21) >
< Oy, ~ Ai(z2), As(fo(za,a1) >

< Cy, Az(fa(m2,01), ~ Ar(z2) >

< O3, ~ Az(w3,y3), Aa(ys) >

< O3, Aa(ys), ~ As(w3,y3) >

< Cy,~ As(ya), ~ As(f2(ya), 1) >

< Cy,~ A3(f2(ya), a1),~ Aa(ys) >
One of the longest S-chains of the example is of length 4 as shown below:

< C1,~ Ai(z1), Ao (1, fi(z1)) >

< O3y~ Ax(73,y3), Aa(ys) >

< Cy,~ As(ya), ~ As(fo(ya),a1) >

< Oz, A3(fo(22,01), ~ A1 (22) >
If we start from another clause, then we can have another S-chain. However,
it can be verified that the example contains no S-cycle.

Definition 5.1.1.2: A set S of clauses is compact if S contains no S-
cycle.

Theorem 5.1.1.1: Satisfiability is decidable for compact sets of clauses.

The proof of the theorem is given in [230].

Theorem 5.1.1.1 means that if a set S of clauses is compact, it can be
determined by logical inference within a finite number of steps if it is consis-

5.1 Consistency Checking 147

tent. Moreover, Lewis has also proved that compact sets of clauses are the
mazimum sets for which consistency is decidable. In other words, the above
definitions determines the weakest condition for a theory to be decidable.

Kung’s work. Kung has given a definition of compactness which is equiva-
lent with that of Lewis’ but in terms of graph theory. Using graph theory, it
is simpler to check the compactness of a set S of clauses.

Before introducing the definitions and theorems of Kung’s work, we need
a brief description of some terms for directed graphs.

A directed graph or digraph G is an ordered pair < V, E >, where V is
a finite set of nodes and E € V x V is a finite set of edges. < u,v > means
that the edge goes from u to v.

The outdegree of a node is the number of edges going from it. The indegree
of a node is the number of edges coming into it.

A path is a sequence vy, - - -, v, of nodes (n > 0) such that < v;,v;41 > is
an edge for ¢ = 0,---,n — 1, such that the v;s are distinct. Except that we
allow n > 0 and vy = v,, in which case the path is a cycle. A digraph with
no cycle is acyclic. If there is a path from u to v, then v is reachable from u.
u is reachable from u for all u.

Semipath and semicycle are defined like path and cycle, except that either
< 3, Vig1 > or < viy1,v; > may be an edge.

A digraph is weakly connected if there is a semipath between every pair of
nodes. A digraph which is not weakly connected consists of weak components
each of which is mazimally weakly connected. A digraph is strongly connected
if every two nodes are mutually reachable.

Definition 5.1.1.3: A wunifiable digraph G(S) = < S, E > for a set S of
clauses as defined as follows.

1. G =< S,E > has S asits nodes and F C S x S as its set of edges;

2. < (C;,C; > belongs to E if for some positive a € Cj, negative 3 € Cj,
such that ~ « is unifiable with 3 for some unifier 6. In this case, we label
the edge by C;.a/C;.6 +6. (i and j may be equal).

Definition 5.1.1.4: Let G(S) be a unifiable digraph of S. Two edges

e = C’il.al/le.ﬁl + 61 and

e = Ci2.042/0j1.ﬂ2 + 92
which belong to G(S) are said to be conflicting if

(Ciy =Ciy Nar = az) V (Cj, = Cj, A B1 = o)

Definition 5.1.1.5: A semicycle of G(S) is said to be conflicting if it
contains a node C together with a pair of its conflicting degrees.

Definition 5.1.1.6: A unifiable digraph G(S) is said to be compact if
G(S) contains only conflicting semicycles (if any).

As an example, let S be the set of clauses:

Ci: ~WF(z1,a) VWF(b,x)

011 ~ WF(ZUQ,ZIZQ)V ~ WF(yQ,.TQ)

148 5. Means for Achieving Semantic Quality

C3: WF(b,a)
then G(S) is compact in Fig. 5.2.

Clause graph

WF(b,a)/~WF(y2,x2)
Cs

Comment

C3 is indegree zero and C2 is outdegree zero.
However, we can determine immediately that
G(S) is compact since C3 is a conflicting node
as well as C1 and C2.

WF(b,a)/~WF(x1,a)

C

WF(b,x1)/[~WF(y2,x2)

C3 is a conflicting node because WF(b,a) =
WF(b,a). A similar argument can be made for
C1and C2.

WF(b,x1)/~WF(x2,x2)

Fig. 5.2. A compact unifiability digraph

Based on the proof of that S is compact (Lewis’ definition) if and only if
G(S) is compact (Kung’s definition), Kung gives the following theorem:

Theorem 5.1.1.2: Satisfiability is decidable for a set S of clauses if
G(S) is compact.

The theorem provides us the capability of checking if a theory is decidable
by means of graph theory, when it is transformed into a set of clauses. Fur-
thermore, Kung has proved other theorems on the properties of G(S) that
may provide more information about the clause; for instance, the satisfiability
of some clause sets can be determined directly under special conditions.

Theorem 5.1.1.3: Suppose that G(S) is not weakly connected, and let
< S1,E; >, < S9,Ey >, -+, < Sy, E,, > be the weak components of G(S).
Then S is satisfiable iff each of Si,---,S,, is satisfiable.

Theorem 5.1.1.4: If G(S) contains no node of indegree zero, or no node
of outdegree zero, then S is satisfiable.

Theorem 5.1.1.5: If G(S) is strongly connected then S is satisfiable. In
particular, if G(S) consists of only one node, then then S is satisfiable.

Theorem 5.1.1.6: if G(S) consists of only a single non-conflicting semi-
cycle, then S is consistent.

A node C is called a redundant node if C' contains a literal a which is not
unifiable with the negation of any other literals in S. G(S) is called redundant
if it contains a redundant node.

Theorem 5.1.1.7: S is consistent if and only if S — {C;} is consistent,
where C; is a redundant node of G(S).

The Consistency Verification for ONER. On the basis of [404] and
Lewis’ and Kung’s work, one can define the following steps to check the
consistency of a database schema:

5.1 Consistency Checking 149

1. Collect the concepts and constraints from one or more ONER scenario
that are considered to be the conceptual schema of a database.

2. Form the formal DB schema from this scenario.

3. Transform the DB schema into a many sorted and first order logical
theory.

4. Transform the theory into a set of clauses S. The method of transforming
is the standard 7-step method that is given in e.g. [134].

5. Construct the digraph G(S) as defined in Sect. 5.1.1.

6. Check G(S) to see if it is weakly connected. If it is, then rename S to
S1, else identify the weakly connected sets Sy,:--,S, each of which is
mazimally weakly connected.

7. For each S; (i =1,---,n) do the following:

— By the theorems in Sect. 5.1.1, check if G(S;) can be determined to be
consistent directly;

— If G(S;) can not be determined to be consistent directly, then use the
theorem 5.1.1.2 to check whether G(S;) is decidable;

— If G(S;) is decidable, then use the resolution method to check its con-
sistency. The method of resolution is given in many books, e.g. [134].
Since S; is decidable, the resolution process will end within a finite
number of steps.

8. Ifevery S; (i =1,---,n) is consistent, then S is proven to be consistent;
if any S; is inconsistent, then S is proven to be inconsistent; if any S; is
undecidable, then S is undecidable.

This algorithm will produce one of three possible results about the consis-
tency of the DB schema: 1) It is consistent; 2) It is inconsistent; 3) The
consistency of the schema is undecidable, i.e., can not be checked with an
effective algorithm within finite steps.

If the result is the third case, it does not mean that the consistency can
not be checked. We know that many first order theories are semi-decidable,
i.e., if a theory is inconsistent, this can be checked within a finite number
of steps. Therefore, even though a set S of clauses is undecidable, we can
still try to use the resolution method to check it. If after a large number
of steps the process still do not stop, then we can remind the users about
undecidability, and suggest that they try to construct an example themselves.
If an example (model) can be constructed, where all the formulae of the theory
are satisfiable, then the schema is still proven to be consistent.

The proofs of the theorems presented here can be found in [218, 230].

150 5. Means for Achieving Semantic Quality
5.1.2 Static Consistency Checking for PPM

The i/o0 conditions of the PPM can be calculated without considering the
dynamic executions. For example, Tao and Kung proposed to calculate the
transitive closure of the precedence relation of a DFD [364] in order to check
the correctness of a decomposition with respect to the precedence relations
between the inputs and outputs of a decomposed process. In PPM, differ-
ently, we use i/o conditions that provide more accurate information about
the relations between an output and some of the inputs of a process. We thus
use a substitution algorithm to calculate the i/o condition expression of an
output in the PPM which is the decomposition of a process, with the similar
principle to that of Tao and Kung.

This algorithm is used for each output of a process network to conduct its
i/o condition expression on the external inputs to the network. First the con-
dition expression(s) for the output of the sub-process(es) is taken or merged
into a “current expression”, then the input names in the expressions are sub-
stituted with the condition expressions for the outputs of other processes that
are linked with the inputs through flow-pipes in the process network, while
those parts in the expression with illegal combination of external inputs are
deleted. The substitution is done recursively until the current expression can
not be changed any more. After deleting the terms containing internal out-
puts produced in some loops of the network, the final expression is just the
i/o condition expression of the output on the process network. If the result is
empty, then the process network is inconsistent because an output can not get
the data needed from the outside of the network during an execution of the
process network. The result should also be compared with the i/o condition
of the decomposed process. The detailed algorithm is given in Appendix B.

5.1 Consistency Checking

The condition expression for P1: ol
(P1.4:01)

(PL.4:i1APL4i3)V(PL4i2/A Pl 4:i3)

JL

((PL3i1APL3iI3) V(PL3i2A PL.3:i3)) A
(((PL3ilAPL3i3) V(PL3i2/A PL.3:i3))
VPL2:i1)

V(PL 2 it A(C ((PL3i1APL3I3) V
(P1.3:i2/A\ P1.3:i3)) VP1.2:i1)

4L

(P1.3:i1APL.3:i2/APL.3:i3
V (PL.3:i1/AP1.3:i2)
V (PL.3:i1APL 3:i3))
V PL.2: i1

4L

(PL.1:i1APL3:i2/APL3:i3
V (PL.1:i1/APL 3:i2)
V (P1.1:i1AP1.3:i3)
V PL.2 i1

(PL.3:i1APL.3:i3) V PL2: i1
= (PL:i1A P1:i2)V P1:i3

The condition for P1:02 (P1.4:02) is the same
as the above expression

151

Fig. 5.3. The i/o condition for the process network for P; of the IFIP ticket booking

activities

152 5. Means for Achieving Semantic Quality

In Fig. 5.3, we calculate the condition expression for the outputs o; and
0o of P; in the process network shown in Fig. 2.45. The result is same as the
original i/o condition of Py, thus we can conclude that the decomposition is
correct on the aspect of i/o conditions.

5.2 Constructivity — The Fundamental Principle

The notion of constructivity was brought into the field of information systems
engineering by Langefors [223], who defined what he called the fundamental
principle of systems work. This principle amounted to the following:

Partition the systems work into separate parts, a through d:

a. Definition of the system as a set of parts:
List all parts from which the system is regarded as built-up.

b. Definition of the system structure:
Define all interconnections which make up the system by joining
its parts together.

c. Definition of the systems parts:
For each single part (or group of similar parts) separately define
its properties as required by the system work at hand and do
this in a format as specified by the way the systems structure is
defined (in task b).

d. Determination of the properties of the system:
Use the definitions as produced by the tasks a, b, and all separate
tasks c, all taken together. Compare with specifications wanted
for the system and repeat a, b, ¢, and d until satisfied.

It is the point d in the list above that involves constructivity. Basically,
it means to derive the properties of a system based on the properties of
its subsystems, and then check if the derived properties are the same as
those specified for the system earlier (if any). The derivation can be called
abstraction, and a specific subsystem structure is said to be constructive if
such an abstraction is possible. Constructivity is necessary when we want
to check the consistency of a hierarchical specification, i.e. to check whether
decompositions are correct.

Some other important points made by Langefors are the following:

— The principle divides tasks into two sets: one concerned with the whole
system (a, b, d) and one concerned with its parts (c, where each part can
be treated separately).

— It gives a natural way for dividing the work among several people (which
is essential for large, complex systems).

— The principle works equally well for top-down and bottom-up development.

— The principle is most efficient when it can be mathematically formalized,
but one should stick to it also when this is not possible.

5.2 Constructivity — The Fundamental Principle 153

Although the ideas of Langefors are more than 20 years old, little has hap-
pened when it comes to automating the fundamental principle in commercial
information systems development tools. Considering the potential such an
automation would have, it seems natural to believe that the main reason for
this is the difficulty of the task. Even though the criticism raised concerning
the applicability of the fundamental principle may be correct, this does not
mean that constructivity is not a nice feature to have. Obviously,

— Languages and methods that tend to give constructive subsystem struc-
tures are highly preferable to those that do not, and

— Any serious approach based on hierarchical decomposition should have
some automated support for constructivity built into its specification tools.

For a more concrete illustration of the possibilities and problems connected
to constructivity, we summarize some experiences from previous research in
the next section.

5.2.1 Constructivity in BNM

An algorithm for abstracting a network of BNM transitions to one higher
level transition whose pre- and postconditions would be the conditions of the
network as a whole (i.e. performing Langefors’ step d above) was outlined by
Kung in 1986 and elaborated further in [342].

The algorithm goes through these three main steps:

1. Find all possible transition sequences.

2. Propagate variable updates along each such sequence to eliminate vari-
ables of internal places from the expression of external output values.

3. Build higher level network based on 1 and 2.

To illustrate the algorithm in some more detail, we give an example. The
network of Fig. 5.4(a) describes the detailed behavior for handling a batch of
orders. The places in the network hold the following variables:

P1 holds variable m
P2 holds variable W
P3 holds variable X
P4 holds variable P
P5 holds variable y
P6 holds variable z

messages)

orders)

individual order being processed)
parts)

rest orders)

shipped orders)

P

For the sake of simplicity we have not shown the attributes of the phe-
nomenon classes. These are indicated by the ordinary point notation following
variables in the conditions of the transitions:

tl: pre: m = “Handle Orders”

post: oX =W
t2: pre: X =0

154 5. Means for Achieving Semantic Quality

post:
t3: pre: (Jz)-(Is)(z € X A s€ SA x.P# =s.P# A z.Q <5.Q)
post: oX = X\ {z} A 2.C# =2.C# A z.P#=x.P# A 2.Q=12.Q
t4d: pre: (Jz)(3s)(x € X A s€ SA z.P# =s.P# A 2.Q <5.Q)
post: o X =X\ {z} A 05.Q =s5.Q —z.QAN y.C# =z.C# N y.P# =
z.P# N y.Q =z.QQ

The network with its conditions can be explained as follows:

— When the message “Handle Orders” is given, the list of orders to be pro-
cessed is copied from the variable W to the variable X (t1 does not consume
P2 because P2 is only a reference place, as indicated by the dotted line).

— Aslong as there are still orders to process, an arbitrary order will be picked
and processed. If it can be satisfied (i.e. the requested part exists and the
quantity in the store is sufficient), then t3 will fire, creating an entry for
the order in the pack list. Otherwise t4 will fire, creating a rest order. Both
t3 and t4 take orders away from the set X one by one (o X = X'\ {z},
where the circle is the temporal next operator, i.e. X in the next state is
equal to X in the previous state minus the element x).

— When X finally becomes empty, t2 will fire. The firing of t2 removes the
token from P3, and consequently, nothing more can happen in the network
until a new “Handle Orders” message arrives, i.e. execution halts.

MES- = MES- | €
SAGES @—ORDERS eoEsS ORDERS
PARTS
PARTS
t
t2
REST SHIPPED] REST |= = | SHIPPED
ORDERS ORDERS ORDERS ORDERS

Fig. 5.4. A Behavior Network, before and after abstraction

Recognizing that the states of the two output places P5 and P6 have no
impact on what can happen next in the network, we can derive automatically

5.2 Constructivity — The Fundamental Principle 155

the state transition diagram of Fig. 5.5. In the vector (P1, P2, P3, P4) of
fig.5.5

P; = 1 means that the corresponding variable exists and has a value
P; = 0 means that the corresponding variable has no value

Concentrating on one execution of the network (i.e. not going around and
around the dotted arc resulting from new “Handle Orders” messages), we
can establish that there are basically four different ways of going through
this graph from top to bottom: either going directly through it (i.e. skipping
both loops), including only the t3 loop (all orders can be satisfied), including
only the t4 loop (no orders can be satisfied), or including both loops (satisfy
some orders, others not).

new "Handl e Orders" nessage

.-

(13 (01,11 4

.........

Fig. 5.5. An STD for the network

The next step of the algorithm amounts to looking at each of these pos-
sible paths through the state-transition graph in order to eliminate internal
variables. This analysis is performed by using a table with 3 columns, PC
(path condition), SC (state change), and PA (path assertion). The first will
contain preconditions for the transitions of the path, the second state changes
on internal variables, and the third the assertion of external output. For the
alternative where both loops are skipped the analysis is very simple, as illus-
trated in Table 5.1.

The main clue of the path analysis is illustrated in the PC entry of t2
here. The precondition of t2 has been given as X = . However, before we
get to t2 in the transition sequence, we have executed t1, for which we have

156 5. Means for Achieving Semantic Quality

Table 5.1. The analysis of the path without loops

pPC SC PA
t1 m=“HO” X=W
2 W=290 STOP

recorded the state change X = W. Whenever new conditions or state changes
are to be inserted, we have to consult the last state change of all variables
involved. Thus, we find that X in the precondition of t2 can be replaced with
W, so that the precondition of t2 becomes W = (). Thus, we have managed
to eliminate the internal variable X.

The analysis of the path with only the t3 loop is a little more complex.
Since the number of orders must be regarded as finite, but arbitrary we first
establish an expression for the first run-through of the loop, and then we
extrapolate this to final run-through (the n-th). The x’es are thus indexed
according to their completely arbitrary order of processing. In Table 5.2 we
have used the following abbreviations:

- U = U {=i},

-V= U?:l{wi}v

- M=y w0,

- N = E?:l .’L'i.Q, and

- ... = le# = a:lC# AN ylP# = .’L'lp# AN le = .Tl.Q and ynC'# =
Tn.CH# Nyn.P# = 2, . P# Ny,.Q = x,.Q, respectively.

Table 5.2. The analysis of the path with only the t3-loop

pPC SC PA
t1 m = “H.0.” X=W
1st t3 (Fz1)(Is) X =W\ {z:} (Fy1)(...)
(1 € WAseSA A
r1.P# = s.P#A 5.Q =s5.Q —11.Q
71.Q < 5.Q)
nth t3 (Jz,)(3s) X=W\V (Fyn) ()
(xn e W\UAsESAN A
Tn.P# = s.P#A 5.Q=s50Q—-N
Tn.Q < 5.Q — M)
62 WA\V =10 STOP

The analysis for the other single loop path is very similar to the one just
considered, only a little bit simpler (since we satisfy no orders, nothing is
subtracted from the store). Thus, we do not bother to show it. The double
loop path, on the other hand, is rather problematic. The state change on X
can be extrapolated as easily as before, since t3 and t4 update this variable
in the same way. For s.QQ, on the other hand, the state change cannot be

5.2 Constructivity — The Fundamental Principle 157

extrapolated exactly. Whenever an x; is taken by t3, z;.Q is subtracted from
s.Q, whereas nothing is subtracted when it is taken by t4. Since the choice
between t3 and t4 is itself dependent on the value of s.Q, an exact expression
for how many z; are satisfied and how many are not cannot be established,
neither can we give an exact expression for the value of s.Q when the execution
of the network halts — all we can say is that it must be somewhere between
the old value and 0. The analysis is shown in Table 5.3.

Table 5.3. The analysis of the path with both loops

PC SC PA
1st t4 (z1)(3s) X =W\ {z:} (Fy1)(..)
(r1 € WAseESA A
x1.P# = s.P#A 5.Q =5.Q —x1.Q
71.Q < 5.Q)
or t3 (Jz1)-(3s) X =W\ {z} (Fy1)(...)

(r1 € WAseESA
x1.P# = s.P#A
71.Q < 5.Q)

nth t4 (3z,)(3s) X=wW\V (Fyn)(..)
(xn e W\UAsESAN A
Tn.P# = s.P#A 5.Q =s5.Q-7
Tn.Q < 5.Q-7)

62 WAV =0 STOP

or t3 (Fwn)—(3s) X=wW\V Fyn)(...)
(xn EW\UAsSESA A
Tn.P#H = s.P#A
Tn.Q < 5.Q-7)

2 W\V=0 STOP

The final step is to establish the higher level network with pre- and post-
condition. By some symbolic manipulation, we are able to obtain the following
formulae:

(Vz)(z e W = ((y)(...) V (32)(...)
and

(Vs)(se S —

(EzEW/\z.P#:s.P# . < 5.Q
—08.Q =5.Q = cwnrpp—spp T-Q)
A (ZzGW/\z.P#:s.P# r.Q <5.Q
= 05.Q € [0,5.Q)))
for the general case where both loops are taken. Since these expressions also
cover the more special cases where one or both loops are omitted, it can be
used as the postcondition for the higher level transition t shown in Fig. 5.4(b).

158 5. Means for Achieving Semantic Quality

The precondition of this higher level network will be the same as the precon-
dition of the first transition executed, i.e. m = “Handle Orders”.

As can be seen, there is a certain vagueness in the expressions, due to
the problems just mentioned with the double loop path. Still, the expressions
obtained are quite informative about what the network does, so evidently it
is possible to do some consistency checking even in cases where we cannot
express the outcome of the execution of a network exactly.

The work accounted for in [342] resulted in the implementation of a Prolog
prototype for BNM abstraction, sophisticated enough to handle cases such
as the order handling problem above.

5.2.2 Constructivity in PPM

In this section, we present the method for dynamic consistency checking for
PPM. More specifically, it is a method to check the constructivity property
of the decompositions by calculating the possible execution sequences of a
process network.

In the sequel, we will first introduce other relevant work on this issue,
and then introduce the method used in PPP. The detailed algorithms of the
method are found in Appendix B.

5.2.3 Approaches to Constructivity Checking

Until now, little work has been done on the issue of constructivity except the
work of Sindre [343] and Kung [220]. Since they did their works in different
ways, we will take a short investigation on both.

In Kung’s approach [220], the inputs and outputs to a process are treated
as logical expressions with three operators conjunction (), disconjunction
(o) and exclusive disconjunction (@) showing the logical combination of the
data flows. To check the decomposition of a process, a logical inference is
taken with the inputs as a given condition. The rules used during the inference
are of two types: logical rules and non-logical rules, i.e., each sub-process
is regarded as a rule by which we infer some data flows (outputs of the sub-
process) from some existing data flows (the inputs to it). For instance, from
the P;; in Fig. 5.6, we get arule P, 1 = a = fi1.1 @ f1.2. The final deducted
expression can be used to compare with the output expression of the higher
level process.

Sindre [343] constructs a state transition diagram on the process network
which is the result of the decomposition of a process. He defines the state
vectors making up a state space, and the event space consisting of the
events of type r; (receive an item from flow f), sy (send an item to flow sy),
bry (start to receive data from repeating flow f), ery (end receiving data from
repeating flow f), bsy (start to send data to repeating flow f) and esy (end
sending data to repeating flow f). The construction starts at an initial state,

5.2 Constructivity — The Fundamental Principle 159

then branches are formed by choosing an event from the possible event set at
the current state (the event will result in a new state). The same procedure
is then repeated for all the new states until every branch has reached to the
STOP state (all the termination flows have been sent out). The produced
graph is used by an algorithm to create the port structure for the outputs
of the network: the sequences are used to construct and ports, the branches
are used to construct xor ports, and the loops are used to specify repeat
and conditional flows. The constructed port structures will be simplified
with some equivalence rules, and are then used to compare with the port
structures of the higher level process.

P1

P1]
a__ d
bc—>;:| Tg-'.—'-:e Pl.1
T

Fig. 5.6. A decomposition of a process P;

In Fig. 5.7, we show the two ways of consistency checking on the decom-
position given in Fig. 5.6.

With respect to Kung’s approach, a fundamental weak point is that the
pure logical method uses static means to deal with the inputs and outputs of
the dynamically and concurrently executing processes. Consequently, whether
a set of input flows and output flows contain data, i.e., if the logical expres-
sions about the flows are true or false, changes over time, whereas in an
ordinary logical system a true statement always keeps its truth in the whole
inference process. Therefore, wrong conclusions might be drawn when we use
this method. This problem has been revealed by the examples given in a
paper [69].

There is another big unsolved problem in both Kung’s and Sindre’s works:
is a decomposition itself feasible? In other words, can the network of processes
execute until some outputs are sent to the outside world? If the processes
combine in an erroneous manner, then it is meaningless to talk about the
correctness of the outputs from the network!

160 5. Means for Achieving Semantic Quality

Nonl ogi cal rul es:
Pl.1lmFa=>f1.1®f1.2

PlL.2l=f1.10p =>f1.3 /\

PL.3I=f1l.20cCc =>f1.4 s o
PlLAl=fl.3@fl.4=>dee S|1.1 5|1-2
(< (<]
. i1 M.2
results infered rules used
step # by the step at the step | |
o (<]
1) = aebec given input "b e
2) =a logical rules, l (|>
1) $1.3 S1.4
3) = b logical rules, | |
1) ri.s 1.4
4) =c logical rules, | |
1 ° Y
o) . bs g bs g
5) = f1.1® f1.2 logical rules, | |
P1.1,2) ° °
6) =f1.3® 1.4 logical rules, €Sy €sd
P1.2, P1.3, | |
° o
3),4),5) o e
7) =de e logical rules, | |
P1.4, 6) . .
a) Kung's consistency check by b) Sindre’s State Transition
logical inference Diagram

Fig. 5.7. Two ways for consistency checking of the decomposition of P;

In Fig. 5.8 we give two examples to show how errors may be generated
from inappropriate network structures. In Fig. 5.8.a, process P terminates
when its and output port sends two data items into flow f» and f3 simul-
taneously. Now process () should be triggered. However, the xor input port
of () requires that one and only one input flow is full, so the output of P is
actually an illegal input to Q. Figure 5.8.b gives another version of decom-
position of process P; in Fig. 5.6. P;; now has an and output port, so that
the flow f11 and f;5 are full simultaneously when P, ; terminates. It may
give at least two results: if Py » and P; 3 was exactly same length of time,
then P4 will get an illegal input; otherwise P, 4 will possibly be triggered
two times. That is still not what we expect.

This problem is not mentioned in Kung’s paper. Because errors often
happen during the dynamic executions of the processes, it is difficult to use
Kung’s method to detect the flaws of a process model. In the other approach,
Sindre had noticed the problem. His solution is the definition of a standard
to determine if a network of processes is a legal decomposition of some higher
level process:

1. All the processes in the network satisfy the PPM syntaz;

5.2 Constructivity — The Fundamental Principle 161

P1
P12)
.
fL1 :| T
N 1.3 B
P Q P11 P14 d
f2 . =T
no | T T a T T > H
ol D R T B
JT
> P13 | |na
4
R fI2 :l .
a) —

b)

Fig. 5.8. Two process networks which may produce run-time errors

2. There is one unique process which is triggered first in every possible ex-
ecution of the network;

3. There is one unique process which terminates last in every possible exe-
cution of the network.

The last two rules are used to prevent the so called “mingling” problem,
i.e., the problem raised by the subsequent executions of a process network
and the concurrent executions of the processes within the network — the data
items in different executions might be wrongly received and processed. A
similar problem is also revealed in [69].

These two rules seem to be too strong to be accepted in a practical
methodology, e.g., in Tempora the rules are not followed. Moreover, even
when we have imposed the constraints, mingling problem may still happen
in concurrent processes between the first and last processes. Therefore, we
would rather give up these two rules and leave the problem open. Here we
only consider the problems of the separated executions of the higher level
process when it is decomposed into a PPM.

Now we turn to the first rule given by Sindre. It states that when all the
processes in a network satisfy the PPM syntax, then the network is a legal one.
Just think of the examples in Fig. 5.8 where all the processes have been drawn
correctly, but where errors can still happen. Thus, our conclusion is: When
we decompose a process into a network of processes, if not only each process
in the network satisfy the PPM syntaz, but also the interrelationships among
them will not produce execution errors, then we can say that the decomposition
is legal or safe.

Such properties, as analyzed above, are difficult to check in a static way.
Therefore, we choose State Transition Diagram (STD) as the basis of our

162 5. Means for Achieving Semantic Quality

method. First of all, we define the standard of consistency of a decom-
position as:
1. The network can execute smoothly until the final outputs to the outside
of the network have been produced;

2. The network receives the same inputs and produces the same outputs as
the decomposed process does.

Construction of an STD Through Canonical Process Ports. In the previous
section, it has been pointed out that the more effective way of analyzing a
process network is to construct an STD. However, because of the randomness
of the events, even the STD for a PPM with only a few processes might be
complex. To be able to construct an STD that is possible to analyze, we
must find out a way for simplifying. The canonical port structure meets
this requirement.

P

M
—

a T.\
b—|—>ﬂ
c

c) Possible execution sequences of P

Fig. 5.9. Conducting possible execution sequences of a process

Looking at the example given in Fig. 5.9. When we consider the execution
of process P given in Fig. 5.9.a, since it is a composite port, we must check if
both the sub-port xor(a, b) and flow ¢ are filled, then by the definition of xor
port, we must also check if flow a or b is filled. The similar work must also
be done at the output side. Moreover, if the ports are more complex, then
the possible executions will be so many that the STD of it will be difficult to
construct.

5.2 Constructivity — The Fundamental Principle 163

However, when the ports are transformed into the form in Fig. 5.9.b,
the possible executions may be know immediately for that we know that
during any execution only one CIP and only one COP are used. Even if the
original port structures are more complex, the property of canonical ports
keeps unchanged, since the structure is unique. Moreover, we know that the
canonical port structure will not affect the meaning of the process since we are
only interested in information about the inputs and outputs in an execution
of the process.

This is shown in Fig. 5.9.c. Assume that any CIP enables all COPs during
different executions, if the CIP and(a,c) is used during the execution, then
we immediately know two possible executions may happen at next time, with
the COP and(e, g) and and(f,g) used respectively.

Another advantage is in analyzing the behavior of the process during the
process. Since CIP and COP are all and ports, we know that all inputs of the
CIP will be received as well as that all outputs of the COP will be sent out.
Therefore, the behaviors of all processes during any execution can be assumed
as the sequence given in Fig. 5.10. The calculation is thus simplified both by
the canonical port structure and by the assumption about the behavior of a
process during an execution.

Now we define the data structure for states and then make some assump-
tions about the possible executions before further design the algorithms for
the calculations.

The data structure for state vector

There is a lot of information associated with the dynamic executions of a
process network. However, because the specification of a process network in
general provide only incomplete knowledge about the process, we can only
obtain limited data which reflect on the execution states of the network. We
are interested in three kinds of states: 1) a flag showing whether a network as
a whole is in a normal state; 2) the state of the processes in the network; 3)
the states of the flows in the network. At any time, the state of the network
is comprised of the states of the network component, and represented by a
state vector. The actual data structure is given in Appendix B.

The semantics of the data structure is explained as follows:

— normal_system_state indicates whether the network is in a legal state;

— if the state variable running in a process state is true, then the process is
running. Because at any execution of a process, one and only one CIP as
well as one COP, is used, we will also keep information of the two active
canonical ports;

— for a CIP, we need to know its ID, and how many times the event of
receiving any of the inputs in the CIP has happened (for a singular input
the event will happen only once, but for a repeating input the event may

happen more times). Similar information should also be kept about the
COP.

164 5. Means for Achieving Semantic Quality

— For any flow, we keep a record about its volume (for a flow only linked
to singular output the volume is 1, whereas for a flow linked to repeating
output the volume is a integer M > 1), and how many data items have
been put into the flow.

The assumptions on the behavior of a process network
Because we can not know the execution details of the processes, we have to
make some assumptions about the behavior of a process network. Two factors
are taken into account: 1) the assumptions should be as close as possible to
the general behavior of process networks; 2) the assumption should depend
only on the information that we can obtain from the specification of the
network.

Now we list the assumptions:

1. only the events of receiving data and sending data are considered;

2. during an ezecution of a process, one and only one CIP, as well as one
and only COP, is to be used;

3. during an execution of a process, a singular input/output will be received
or sent once, whereas the number of receiving or sending of a repeating
input or output may vary. At the input side, a repeating input will be
received at least once from each flow pipes linked to it and receive from
every flow all the available data items. At the output side, if a repeating
output depends on a singular input by the i/o condition of the process, it
will be sent out twice; if it depends on a repeating input, however, it will
be sent out as many data items as the repeating input receives .

4. the outputs of a process depend only on its inputs. This means that when-
ever an output condition is satisfied, it will send the output to the corre-
sponding flow without considering whether the flow is full or not;

5. the inputs from outside of the boundary of the network can always be
received;

6. a flow linked to a data store as a data resource can always provide an
item to the corresponding input or receive a item from the corresponding
output;

7. the life cycle of an execution of a process is

begin {triggered by arrivals of a group triggering inputs to the CIP}
receive all the triggering inputs;
while the process has not received all non-conditional inputs and sent out
all the non-conditional and non-terminating outputs do
begin
receive all the inputs that have been put into the flows linked to
the inputs;

if nothing is received (data have not arrived or all input actions have ended)

then send out all available non-terminating outputs;
end {while}

5.2 Constructivity — The Fundamental Principle 165

send all the terminating outputs of the COP;
end; {the execution}

8. a receiving or sending action costs very little time, so during concurrent
executions of the processes, we can always consider a group of receiving
or sending actions of a process at a particular time point as an execution
unit which is atomic relative to the concurrent executions of the processes.
In Fig. 5.10, we show these “packaged events” during the execution cycle
of a process.

9. whenever a flow gets more data than its capacity, or triggering inputs
arrives to a running process, or two different sets of triggering inputs
which can trigger two CIPs of a process are full simultaneously, the pro-
cess network has fallen into an error state and can not go on with its

execution.

t | | | | | .
receiving . e s sending
triggering garce|V|ng non-triggering inputs terminating
inputs outputs

sending non-terminating outputs

Fig. 5.10. The execution life cycle and the operation groups of a process

The algorithms to construct an STD

We use a directed graph to represent an STD: each node represents one
or more state vectors and each edge is marked with one or more events that
change the state of the process network at one time point to another state at
the next time point. When a node represents two or more state vectors, then
the possible consequent events for each of the state vectors will be exactly
same. Any node represent only one state vector when it is created, but may be
attached more vectors during the construction of an STD. The time interval
between the states is not fixed, because we assume that each process can
perform receiving or sending actions in a short time, and that it can carry
out all the possible operations subsequently and independently without being
interrupted by other processes. Therefore, what causes the change of one state
into another is not a “single event”, but a set of events occurring in a process.
For detailed algorithms, see Appendix B

166 5. Means for Achieving Semantic Quality

1/0 CONDITIONS

P1: p2:

i1 |i2 |i3 i1 |i2
ol| X | X ol X %
ol X o2 | X | |
02| X | X
02 X
kS
12
P1.3

f2

P1.1
f1 i1
L O
3 i
-
P1.1: P1.2: P1.3: P1.4:
il i1 i1 |i2 i3 i1 |2 |[i3
ol X ol X ol X X ol| X X
02 X ol X | x ol X X
02 X X 02| X X
02 X X 02 X
03 X X
o3 X X

Fig. 5.11. The IFIP ticket booking activities with canonical ports

5.2 Constructivity — The Fundamental Principle 167

(STARD)

datum arrives at f1 datumarrives at f3

P1.2:

O . .
receive_il

P1.1
receive_i 1
O

P1. 2:
send_ol

P1.3: P1.2

send_o2

P1.3: P1.4
fve i P1.3: ive i P1. 4:
receive_i3 receive_i3 receive_i?2 receive_i 2
P1. 3: b1 4
send_o3 send_ol P1. 4: . 4:
- P1.3: - B . ; ; i3
receive_i 2 P1.3: receive_i3 recetve_
P13 ©, receive_i2
P1.3: receive_i 3
send_o02 P1.3 PL.3: i P1. 4: P1.4
receive_i 3 send_o2 send_ol
Q
P1. 4:
@)

P1. 4:
receive/i3

receive_i 3

@
P1. 4: Pl1.4
send_ol send_o2

Fig. 5.12. The STD of the process network for P; in the IFIP ticket booking
activities

In Fig. 5.12, we draw the STD for the process network in Fig. 2.45 in
order to show an example. This example is redrawn in Fig. 5.11 indicating
the canonical ports being used.

A small circle represents the state vector attached to a node in the graph.
Usually only one state vector is put on a node, but sometimes a node may have
more state vectors. In Fig. 5.12, the node B has two state vectors showing
that the process Pj 3 (see Fig. 5.11) may be triggered with a item at its
input 47 or . In the first case, the process P, ; just terminates and sends an
item into the flow f1.1; in the second case, the process P » just terminates,
instead, and sends an item into the flow f; 5. Both states will result in exactly
the same subsequent events, either using the canonical port for o; or that for
02 and o3, so they are attached to the same node. Node A and B also show
another feature of the STD: a state can be changed into different new states
by the same event (for node A it is the event receive;,). This shows that
when a process is triggered in one CIP, it may have different CIP/COP pairs
in its executions (also see process P; 3 in Fig. 5.11). In the STD, every branch
from the START node can reach a STOP node, so we say the process network
is feasible.

Another example is given in Fig. 5.13, where the canonical port structure
and a part of the STD of the process network in Fig. 5.8.b) are shown. The

168 5. Means for Achieving Semantic Quality

datum arrives at a
P1.1: receive_il

P1.1: send_o1, send_02

P13:
receive_il

P1.2:
receive_il
P1.2:
receive_i2
P1.2:
send_ol K
P14 5 B @ N USSR
receive_il :
pLa:
(O send_ol, send_ol

P1.3:
receive:il

P1.3: receive_i2

1.4:
P1.3: send_ol
A @ Q Pl.a4receive_i2
4 1.4:

P1.4: send_o2

Fig. 5.13. The canonical port structure and the STD of the process network

i/o conditions are omitted since no non-terminating outputs exists in any
process (thus we assume one terminating output can always be sent when
the process is triggered). Node A is inconsistent, because when process P; 4
is still running, process P; 3 sends a item from its output o, then the flow f; 4,
which can trigger P; 4 trough its input io, is full. This leads to an inconsistent
state. Node B is also inconsistent, because process P 4 is triggered and sends
data into the flow_pipe e twice, and the capacity of the singular flow e is only
1. In fact, all paths from node START will lead to an inconsistent state, so
we say the process network is infeasible.

The above two examples show the extremities of executions. As a matter
of fact, in analyzing the various process networks, most of them will behave
differently along the different paths: some of the paths will lead to consis-
tent STOP states and some others will lead to INCONSISTENT states. An
example is given in Fig. 5.14. We say such an STD is partially feasible.

5.2 Constructivity — The Fundamental Principle 169

a datum arrives
atfl
P1.1:
receive_jl
PL.1:
send_ol
P13:
receive_il
O

P1.2:
receive_il

P1.2:

send_ol P14:

Q_ receive_i2

send_ol

P1.4:
receive_il

Pl.4:

P1.3:

P1.4: 3. P12: send_ol
send_ol rceive_il receive_il
PL3: - P12
rceive_il Q_ P13 receive_il
send_ol P12 p1.2:
P13 receive_il send_ol
1% s CINCONSISTEND

P1.4:
receive_il

P1.4:
receive_i2

P1.4: o) ,
send_ol F;;‘d ol

Fig. 5.14. The canonical port structure and the partially feasible STD of a process
network

Because the construction of an STD is only to simulate the execution of
a process network approximately and the details for control of the execution
is ignored, it is possible that a process network is practically correct even
though its STD is only partially feasible. However, if a network is totally
infeasible, we then have enough reason to say it is not a correct structure.

When a process network is feasible or partially feasible, a further question
about the network is if it has the same properties as the higher level process
which is decomposed into the process network, i.e., if the network produce
the same outputs as the decomposed process? Meanwhile, if the outputs to
the outside of the network have the same relationships with the inputs from
the outside as those specified in the i/o condition of the process?

Of the two problems, the second one has been solved by static checking.
The algorithm for this was presented in the previous section.

To solve the first problem, we can construct the port structure for the
network. We first find all the possible execution paths from the START state

170 5. Means for Achieving Semantic Quality

S Le

Path 1 Path 2 Path 3 Path 4

Fig. 5.15. Synthesis for the Properties of the Process Network

to a consistent STOP state. The example in Fig. 5.15 shows the principle to
identify paths: each path with a particular node set is selected and identified,
and the nodes within a loop should appear in a set only once except the node
at which the loop begins and ends.

Each path shows an execution of the process network, thus the receive
events at the external inputs imply an and input port containing these in-
puts. Similarly, the send events at the external outputs imply an and output
port. Because in an execution the process can only follow one path, it is also
implied that the and ports on the different paths will compose an xor port.
However, it must be recognized that two different paths may have the events
for receiving or sending data at the same or similar inputs or outputs, so the
and ports for them should first be merged. On the other hand, the fact that
some event may appear more than once or be within a cycle implies that some
inputs or outputs are repeating and/or conditional. All the considerations
have been represented in the algorithm Construct-Input-Port-For-Process-
Network given in Appendix B.

Another algorithm, Construct-Output-Port-For-Process-Network, is the
same as the one above except that it deals with send events to the exter-
nal outputs rather than the receive events, and an output port structure is
constructed for the process network.

The algorithms build the canonical port structures directly. Since the port
structures for the higher level process is also transformed into the canonical
form, it is convenient to compare the canonical ports to check if the process
network receives and sends the same inputs and outputs as the decomposed
process.

In Fig. 5.16 we construct the port structure through the STD which has
eight possible execution paths in Fig. 5.12. In comparing the constructed
ports with that of the original process given in Fig. 5.11 we find that the
results are the same. It suggests that the decomposition is correct.

5.3 Driving Questions

A technique that can be used during modeling in a conceptual framework
integrating several conceptual modeling languages such as PPP is the use

5.3 Driving Questions 171

The input side The output side

Path 1:
P1.1: receive_il (f1)
P1.3: receive_i3 (f2)

Path 2: Path 1:

P1.1: receive_il (f1) P1.4: send_ol (f4)
P1.3: receive_i3 (f2) E?tﬁ 2 d o2 (5
Path 3: Pa.tﬁ Z?n -0z (19)
P1.1: r ive_il (f1 .

P1. 3: riﬁii v§:i3 Efzg FF:l't:; Z_end‘m e
Path 4 Py 4. send_o2 (f5)
P1.1: receive_il (f1) .

P1.3: receive_i3 (f2) E?t‘? Eénd ol (f4)
Pat h: 5: Path 6

P1.1: receive_il (f1) P1.4: send_o2 (f5)
P1.3: receive_i3 (f2) Path 7:

P1.3: receive_i3 (f2) (within a | oop) P1.4: send_ol (f4)
Path 6: Path 8

P1.1: receive_il (f1) P1.4: send_o2 (f5)
P1.3: receive_i3 (f2)

P1.3: receive_i3 (f2) (within a | oop)

Path 7:

P1.2: receive_il (f3)

Path 8:

P1.2: receive_il (f3)

f1 fa
—
f2_H_>:| f5

f3

Fig. 5.16. Construction of the port structures through the STD in Figure 13

of driving questions. The overview here is partly based on work on Tem-
pora [367], but extended to take the whole conceptual framework of PPP
into account. Different questions will be more or less applicable according to
the subset of the modeling languages used in the different modeling activi-
ties. One should also be aware of not only pursuing the avenues for modeling
that open up based on the use of this kind of questions, since this can hinder
the development of models that are not so easily represented in the more
specialized parts of the languages.

5.3.1 ONER-Modeling

This can be performed in isolation according to guidelines for semantic data
modeling. Driving questions for interaction with the other languages are given
below.

Given a role in an actor-model or process-model:

— Are the structural aspects of the role represented in ONER? One might
either find the role represented as an entity-class, or as the role an entity-
class has in a relationship-class.

172 5. Means for Achieving Semantic Quality

Given a process model:

— For a store: Are the contents of the store represented in an ONER-model?

— For a flow: Are the data-items traveling on this flow represented in the
ONER-model?

— For a process: What data do the process use?

Given a rule:

— Are all structural components that the rule refer to found in the ONER-
model?

5.3.2 Process modeling

Process modeling in isolation is similar to DFD-modeling, with the extensions
indicated above. When using the speech-act modeling extension though, it
should be closer to action-workflow, using conversations as the main struc-
turing principle.

Driving questions in connection with the use of several languages are given
below:
Given a rule:

— Does the rule indicate a process that is not currently found in the process
model?

Given an actor or role:

— Do the actor/role have a supporting or communicating position in the
process model?

— Do an existing actor/role support a process or a store that is not yet
depicted?

Given an entity or scenario:

— How do instances of a class come into existence? When do they cease to
exist?

— When and how are relationships established and removed?

— Is the entity being processed by any process?

— Is the entity being stored in any existing store?

— Is the entity or part of the entity-class transported as items on any flow?

Given an illocutionary act:

— Are there flows in this (or other) process models for all illocutionary acts
of a given conversation?

5.3 Driving Questions 173
5.3.3 Rule Modeling

The participants can be asked general questions such as if there are any
specific types of restrictions that are valid for a particular area, or if there
are any specific policies or types of guidelines that are used in the day to day
running of the organization.

Given social actors and roles:

— What rules apply to a given role, or to a given actor (e.g. yourself) in a
given situation?

— Does the rule applying to a super-role also apply to the sub-role?

— Does all rules applying to the sub-role also apply to the super-role?

— Does a rule applying to an actor also apply to any of the roles that the
actor fill?

— Do all rules applying to a role, apply to all the actors filling the role?

Given a certain entity or relationship class:

— How do instances of a class come into existence? When do they cease to
exist?

— For a rule valid for a subclass, is it also valid for the superclass?

— For a rule valid for a class, is it also valid for the subclasses?

— For a rule valid for a class, is it also valid for sibling classes?

— When and how are relationships established and removed?

Given a certain process:

— What is triggering a process?

— What rules applies to the internal functioning of the process?

— What are the different cases and what actions should be performed for each
case? I/O-matrices may be useful here to structure the answers before they
are represented as rules.

Given an illocutionary act:

— Are there any rules being implied by the performance of the illocutionary
act that are not yet represented?

Given a timer:

— What is the rule resulting in the sending of each outflow?
— Are all inflows and offlows covered by rules?

Given a rule:

— Is this rule internally or externally institutionalized? If it is externally
institutionalized, which internal rules need this to be in force to permit the
internal rule?

— Do the rule depend on the existence of an externally institutionalized rule?

— What rules does the rule contribute to fulfilling? How else is this rule
realized?

174 5. Means for Achieving Semantic Quality

— How can this rule be realized?

— Are there alternative ways of realizing the rule than what is already indi-
cated?

— Are there rules that work against this rule?

— Do the rule use terms which need to be defined by other rules?

— Is the rule a more restricted version of another rule?

— Are there any major exceptions for the rule?

5.3.4 Actor Modeling

Given an actor or role:

— For an organizational actor, is all its parts modeled?

— For any actor, is all relevant actors that it is a part of modeled?

— For a role, is all actors that have this role modeled?

— For a role, is all the institutionalizing actors of the roles given.

— For a role, is all relevant sub-roles of the role given?

— For a role, is this a sub-role of another role?

— For an actor, is all of the relevant roles of this actor included?

— For a support-relationship, do the supporter support in a given role? On
behalf of a given actor? Is the supportee supported in a given role? On
behalf of a given actor?

— For a communication, do the sender communicate in a given role? On
behalf of a given actor? Is the receiver receiving this item in a given role?
On behalf of another actor?

— Is an actor part of another actor in a given role? On behalf of a given actor?

— Is there a power relationship between this role/actor and another?

Given a process model:

— Is there an actor or role either communicating or supporting, that is not
included in the actor-model?

Given an entity-class:

— Do the entity-class correspond to a role that is not included in the actor-
model?

— Is there specializations between entity-classes that are also represented as
roles, that are not indicated as super-roles?

Given a rule:

— Does the rule apply to a role or an actor that is not included in the actor-
model?

— Is the rule institutionalized by an actor that is not included in the actor-
model?

5.4 Chapter Summary 175
5.3.5 Additional Metrics for Completeness and Validity

When discussing the use of specific modeling languages, it is possible to come
up with more specific metrics than could be done in Chap. 3 when discussing
this in general terms.

We will here, inspired by the suggestions for metrics for requirements
traceability and completeness [73] and the above come up with some proposals
for metrics in connection to the use of rule-hierarchies.

— Validity: The number of rules that are not necessitated, obligated or rec-
ommended by another rule. A ratio of this compared to the total number
of rules might also be interesting. One will reach a point where one is not
longer able to come up with higher goals motivating for a rule [403]. These
goals should be indicated specifically and not be counted when calculating
such metrics.

— Completeness: The number of rules that are necessitated, obligated or rec-
ommended based on a given rule. Three cases are of special interest:

— 0 links: The work in this area is to be completed. If the rule is a detailed
rule for the processing of a process or giving explicit constraints on the
ONER-model, and is thus not meant to be further specialized, the rule
is not included. In the case this rule belongs to an area that it is decided
to not look into further for the moment, the same applies.

— 1 or 2 links: This might indicate that the analysis of the rule has been
superficial and it needs to be worked on further.

— The rule has a high outdegree: This may mean that the higher level
rule itself is too general, and should be split into several high-level rules
before being linked to the next level.

— Unresolved issues: The number of downward or-nodes, discouragement,
prohibitions, and exclusions that are not addressed.

Similar metrics could be devised for the overall approach, but this is not
discussed in detail here.

5.4 Chapter Summary

Semantic quality is the correspondence between the model M and the mod-
eling domain D.

The framework contains two semantic goals; validity and completeness.
Validity means that all statements made in the model are regarded as correct
and relevant to the problem. Completeness means that the model contains
all the statements which would be correct and relevant about the domain.
These correspondences can neither be established nor checked directly: to
build the model, one has to go through the participants’ knowledge regard-
ing the domain, and to check the model one has to compare this with the

176 5. Means for Achieving Semantic Quality

participants’ interpretation of the externalized model. Hence, what we ob-
serve at quality control is not the actual semantic quality of the model, but
a perceived semantic quality based on comparisons of the two imperfect in-
terpretations. Perceived validity of the model externalization means that
all statements that are interpreted to be part of the model is also part of the
participants knowledge of the area. Perceived completeness of the model
externalization means that there are no relevant statements known by the
participant which are not interpreted to be already contained in the model.

For anything but extremely simple and highly inter-subjectively agreed
domains, total validity and completeness cannot be achieved. Hence, for the
semantic goals to be realistic, they have to be somewhat relaxed, by intro-
ducing the idea of feasibility. Attempts at reaching total validity and com-
pleteness vs. the primary domain will lead to unlimited spending of time and
money on the modeling activity, thus being invalid relative to the purpose
context, of the modeling activity. The time to terminate a modeling activity
is thus not when the model is “perfect” (which will never happen), but when
it has reached a state where further modeling is regarded to be less beneficial
than applying the model in its current state. With respect to this, a relaxed
kind of validity and completeness has been defined.

There are many modeling activities that can be performed for establishing
higher semantic quality. We have in this chapter concentrated on three:

— Consistency checking based on a logical description.
— Consistency checking based on constructivity.
— The use of driving questions to improve completeness.

6. Means for Achieving Pragmatic Quality

We have increased the font size in Fig. 6.1 of the relationships of the quality
framework that are looked into in this chapter.

The main goal of pragmatic quality is comprehension. A conceptual model
can be difficult to comprehend due to the formality or unfamiliarity of the
modeling language used, the complexity or size of the model, or the effort
needed to deduce important properties of it. A conceptual modeling environ-
ment may make use of certain techniques to enhance user’s comprehension.
Looking at the linguistic aspects of conceptual modeling, we can describe
such strategies along the following four dimensions:

— Language perception concerns user’s ability to understand the concepts
of the modeling language. This was discussed in Chap. 2.

— Content relevance indicates the possibilities of separating between ir-
relevant and relevant model properties, so that at any time one is able to
focus on just the relevant parts

— Structure analysis depends on the environment’s abilities to analyze and
expose structural properties of the conceptual model.

— Behavior experience is related to the model execution facilities offered.

A technique provides an improvement to one or several of these dimen-
sions, thereby enhancing the comprehensibility of conceptual modeling.

6.1 Overview of Activities

Some of the activities to achieve pragmatic quality are:

Audience training. Fducate the audience in the syntax and semantics of the
modeling languages. We will discuss this aspect in more detail in Chap. 8.

Inspection and walkthroughs. : Manually reading a model, going through it in
an orderly manner, explaining it. Useful tool-support for this in a modeling
tool is support for navigation and browsing of the model. This also include
the possibility of scrolling the model, either incrementally (pan) or one page
at the time (page), and zooming.

178 6. Means for Achieving Pragmatic Quality

Social
quality
- Social
Participant Perceived ac:t:cli
knowledge semantic) .
K quality |nterpreltat|on
Physical 1
wy . Pragmatic
mpirical
quality allty
Modeling SZT;:;C Model Szz:ﬁtyic Language
domain externalization extension
D M L
Pragmatic
guality
Technical

actor
interpretation
T

Fig. 6.1. Coverage of this chapter

Transformations. Generally to transform a model into another model in the
same language. This can generally be expressed as

T: Mly, — M2, (6.1)

The need for transforming models arise for several reasons. First, models
may be transformed to improve the efficiency. In Gist [19] and ARIES [190],
an initial operational specification gradually evolves into the final implemen-
tation by a continuous replacement of real-world modeling constructs with
more efficient constructs from the programming world. Second, models or pro-
grams may have improved readability through use of transformations. This
is discussed under layout modifications below. As a final example, models
or programs need to changed if the underlying language grammar changes.
A semi-automatic method based on the grammar changes is presented by
Garlan et al. in [131]. For a set of simple grammar changes, transformation
rules are derived automatically. For more complex changes, developers have
to write specialized transformation procedures.

Rephrasing is a meaning preserving transformation where some of the
implicit statements of the model is made explicit. One example is the use in
ERAE [155] applying logical rules such as

6= =~ o

6.1 Overview of Activities 179

. In KAOS [78], more advanced rephrasing and refinement rules are used.

Filtering is a meaning removing transformation, concentrating on and
illuminating specific parts of a model. Filtering has been defined in [331]
based on the notion of a viewspec V, which is a model containing a subset of
the statements of another model in the same language i.e. V C M.

Another way of specifying a filter is to say that it is a set of not necessarily
syntactically complete deletes of statements i.e. Dy s.

Filters can be classified into two major groups:

— Language/meta-model filters: Suppress details with respect to graphemes
and symbols in the modeling language. An example is illustrated in Fig. 6.2
where all attributes are removed.

PERSON|——— >—— PAPER

Fig. 6.2. Example of a language filter

— Model/specification filters: Suppress details with respect to a particular
model. An example is given in Fig. 6.3 where only the attributes and sub-
classes of a selected entity-class, in this case 'paper’, are retained.

Fig. 6.3. Example of a model filter

PAPER

Other relevant aspects of filters include [331]:

— Inclusiveness/exclusiveness: A filter can be defined by specifying the
components to be included in the viewspec or by specifying the compo-
nents to be excluded in the viewspec. This is referred to as inclusiveness
and exclusiveness properties of the viewspecs, respectively.

— Determinism/non-determinism: A filter is deterministic if the resulting
viewspec of performing the filter on a model M is the same each time,
given that it operates on M each time. If the result is not predictable,
the filter is non-deterministic.

— Global/local effects: We distinguish between two cases: (1) The scope of
effects is local if there is no effect of the filter beyond the specification
upon which it operates, and (2) it is global if the scope of effect is beyond

180 6. Means for Achieving Pragmatic Quality

the model upon which it operates. A serious problem with filters with
global effects is how to propagate changes to affected models.

Deletions and insertions are general transformations. On a higher level
of granularity, these small transformations can be bundled into deltas, to
differentiate between models in different versions. Making a new version of a
model can thus be described as a mapping from the given model, to another
model in which a set of statements have been deleted, and a set of statements
have been inserted:

Vm =Ipy 1 (6.2)

where D is the set if deleted statements, and Z is the set of inserted state-
ments.

Aspects in connection to versioning of viewspecs will be discussed in more
detail in Chap. 8.

Translation. A translation can generally be described as a mapping from
a model in one language to a model containing all or some of the same
statements in another language:

T:MLZ.—)ML].,’L.#]' (6.3)

In paraphrasing both L; and L; are textual languages. Often this term is
used more generally.

In visualization, L; is a textual language whereas L; is a diagrammatical
language.

Translations between different diagrammatical languages can also useful
for comprehension in the case different persons are fluent in different related
languages. For example for those being familiar with GSM, the diagram in
Fig. 6.4 might be better for comprehension than the diagram in Fig. 3.3.

WRITTEN BY

Fig. 6.4. The example written in the GSM language

Finally, one might want to translate a diagrammatical model into a textual
language, for instance a programming language so that the resulting model
can be executed, or natural language. In this case L; is diagrammatical and
L; is textual.

There are a number of tasks which can be characterized as translations. By
automating these tasks in modeling and CASE tools, the tedious and error-
prone manual work that would otherwise be needed is eliminated. Although
we are particularly concerned with translations, these are of the same nature
as other syntax-directed tasks, and hence can be built using the same kinds

6.1 Overview of Activities 181

of support. We use the term translation facility to denote a system which
allows translations to be specified and at least partially be implemented au-
tomatically. The need for this kind of support has long been recognized for
programming environments, as seen e.g. through the development of parser
generators or compiler-compilers. However, such facilities are rarely used in
general modeling environments which support conceptual modeling. Rather,
ad hoc procedural approaches tend to be used, where translators are dedi-
cated to a single task and where the source and target languages are fixed.

We now briefly describe some of the syntax-directed tasks which are un-
dertaken in CASE, with an emphasis on translations.

Multi-language Environments. Examples of work in this direction are the
AMADEUS project [28], Lubars’ general design representation GDR, [245],
and the ARIES environment [190]. Another example is given by Delugach
in [88]. He uses Sowa’s conceptual graphs as an internal language to trans-
late between the ER model, dataflow diagrams, state transition diagrams,
and requirements networks in SREM [5]. Of these works, only ARIES uses
general translation facilities. Also, many CASE environments provide a set
of integrated languages which cover different aspects of a system. It is often
the case that these are semantically overlapping, so translations can be used
to avoid having developers state the same data more than once. This is the
case with e.g. PPP, and with PRISMA as explained in [274].

Phase Integration Support. Some environments aim at providing automated
support for transitions between different phases of the systems life cycle. This
can be done by translating models resulting from one phase to initial models
for the next phase. Usually this can only be done semi-automatically, since
the transition involves design decisions, and there is a wide range of models in
the latter phase which are consistent with models from the previous phase.
Hence the developers must often interact with the environment, to select
an alternative if many alternatives exist. Both the DAIDA prototype [64,
187] and the IPSEN prototype [228] give support along these lines. PPP
gives support e.g. in the transition from PrM modeling to PLD modeling.
Also, many commercial CASE environments provide some support for phase
integration.

Code Generation. Code generation can be seen as a special instance of
phase integration, in that it involves translation from some intermediate
model to a prototype or the final implementation. Examples of environments
supporting code generation include TEMPORA [243], STATEMATE [164],
PROTO [204], and PPP. Also, commercial environments like IEF use transla-
tions, for instance to port implementations to different target platforms. The
majority of code generators are developed procedurally, closely tied to the
source and target languages. This leads to less adaptable generators, which is
not a problem as long as the environment relies on a stable set of languages.
However, in more unstable situations more flexible approaches are needed.

182 6. Means for Achieving Pragmatic Quality

Documentation. Documentation is tedious, but yet important work which
can be partly automated by extracting and structuring data from conceptual
models to form textual/graphical documents. Some environments offer the
contents and structures to be explicitly specified e.g. STATEMATE, whereas
other rely on a fixed specification, e.g. PPP. Many commercial environments
support documentation.

Formalization. An often used method for formalizing a language, is to define
its constructs through the translation to another, already formal language.
Falkenberg [110] and Lubars [245] use this principle in order to define the
semantics of languages for modeling of dynamic system aspects. Falkenberg
uses an extended Petri-net formalism to define semantics of DFD’s and action
diagrams, while Lubars uses Petri-nets to define parts of the semantics of his
general design representation.

Reverse Engineering and Re-engineering. Reverse engineering means find-
ing patterns in program code or database schemas, and produce higher level
abstractions from these in order to get an understanding of the underly-
ing design and conceptual model. These abstractions are then used in the
maintenance of the program, which probably was not developed using CASE
technology. In a sense, reverse engineering can be seen as phase integration in
the ’opposite’ direction. It should be clear that when analyzing the existing
code, the parsing structures of the input play a key role. Re-engineering means
porting the produced abstractions into a CASE environment and thereafter
go towards a new implementation, at least partly automatically.

6.1.1 Translations Facilities

Requirements to translation facilities resemble many of the requirements to
software in general. Here, we will review some important requirements from
the viewpoint of the translation task, and point out some particular require-
ments for translation.

Separate Specification Level. It has proven advantageous to have a separate
specification level for translations, or at least to be able to formulate transla-
tions declaratively (Rich and Waters [313]). For this purpose, separate trans-
lation specification languages are developed. Purely procedural approaches
tend to lead to less maintainable translation specifications. If the specifica-
tions are closely linked to the grammar of the source and target languages,
they are more easily adapted to changes in the grammars. Note that as lan-
guage grammars are specified abstractly in BNF or semantic data model
form, the translation specifications should preferably refer to these rather
than to the details of their repository representations.

General. The translations should be easily expressed, and the specification
language should be complete for the kinds of translations needed. Further-
more, they should be adaptable, and hence easily maintainable.

6.1 Overview of Activities 183

Independence from Languages and Tasks. The translation specification lan-
guage should be independent of source and target languages, and of the par-
ticular translation task. This way it can be used for the variety of translation
tasks used in CASE environments.

Mized Model Representations. Translations may involve mixed representa-
tions of models, in particular data model and parse tree representations. We
saw that in the PPP environment, models can be stored as relations. However,
expressions in PLD constructs must be parsed before models are translated.
One can also imagine that such expressions are stored directly as parse trees.
A particular case of mixed model representations, is when a translation is
needed from a textual to a graphical representation, or vice versa. Further-
more, it should be possible to port the translation implementation to different
repositories. In fact, this can be considered to be a translation task in its own.

Predefined Semantic Actions. The translation specification language should
include a set of commonly used predefined semantic actions which are used
in the production of outputs in the target language when certain patterns in
the source models are found. Examples of such actions are actions to combine
partial results to one overall result, to store and retrieve models, and to parse
strings according to a given grammar. It should also be possible to extend
the basic set of actions as necessary.

User Interaction. It is sometimes necessary to involve the developer when
conflicting translations are applicable, and let her choose the most appropri-
ate. This may for instance be the case in the transition from one phase in the
systems life cycle to the next.

Automatic Implementation. Preferably, translation specifications should them-
selves be automatically translated to an efficient implementation. It should
be possible to specify this translation using the translation specification lan-
guage itself.

Source
Source language model
specification

Translator

Translator Translation | Translator

specifier specification implementor Implemented
translations

Target language -

i

specification Target
model

Fig. 6.5. The architecture of a general translation facility

184 6. Means for Achieving Pragmatic Quality
6.1.2 General Translation Principles

For a translation between two languages, the languages need to be compatible
to some extent. This means that the meaning of the source models can be
preserved to some degree in the target model. If the target language can not
express the same as the source model, some information will be ’lost’ in the
translation. On the other hand, if the target models need more information
than what is found in the source models, it may be necessary to generate
defaults, or to involve the developer to get the necessary data.

A complete translation is a translation where all statements in the source
model are also contained in the target model. i.e. the mapping is an injection.

T:MLi%MLj,VSEMLi,SEMLJ. (6.4)

A valid translation is a translation in which all statements in the target
model are also contained in the source model, i.e. the mapping is a surjection.
For a translation that is both complete and valid, we have a bijection between
the two models. It can also be useful to distinguish a completely traceable
translation, where all statements in the target model is based on and can be
traced back to the source model.

T:MLi%MLj,VSEML].,SEMLi (6.5)

Another possible problem is that two-way translators may not end up with
the initial model when this model is translated forth and back again. This
may happen because different constructs in the source language are mapped
into the same target language construct. When the reverse translation is to
be done, it may be impossible to decide which original construct was used.

A general architecture of a translation facility is depicted in Fig. 6.5.
First, translations are specified referring to the source and target languages.
From this the translator is derived. It accepts models written in the source
language, and controls the use of the implemented translations to produce
a model in the target language. We refer to the two models as source and
target models, respectively.

Traditionally, automated syntax-directed translation has been much stud-
ied in the context of compiler systems (Aho and Ullman [3]). Without going
in details, we will present some major ideas taken from these systems. They
certainly have relevance to more general translation problems. During trans-
lation in these systems, basically three steps are performed: Parsing of the
input to produce a parse tree, construction of a dependency graph which de-
termines the order in which the translation results are produced, and finally
the actual production of output.

Although most translations and transformations will be easier and faster
to perform when having tool support, they can also be done manually. Man-
ual translations and transformations can also be used as part of participant
training [132]. On the other hand, also audience training might be enhanced

6.2 Prototyping 185

by using tool support. Several specific applications of translations and trans-
formations and combinations of these exist. Some examples are:

— Model execution: Translate or transform the model to a model in an ex-
ecutable language, e.g. the languages used for the resulting CIS, and exe-
cute this model [162, 398]. When doing this translation manually, we speak
about prototyping in the usual sense.

— Animation: Make systems dynamics explicit by using moving pictures. This
might take the form of icons such as a telephone ringing or a customer ar-
riving at a registration desk, or it might apply the symbols of the modeling
language [222, 84].

— Explanation generation: This can be manual or tool-supported. An expla-
nation generator can answer questions about a model and its behavior [151].

— Simulation: Use statistical assumptions about the domain such as arrival
rate of customers and distributions of processing times, to anticipate how a
system built according to the model would behave if implemented. Neither
this is practical without tool support for large models. Simulation can be
combined with execution, animation, and explanation [162].

The properties a model and the languages it is made in must have include
those for syntactic and semantic quality, as well as executability (i.e. the
execution of the model has to be efficient), expressive economy, and aesthetics
as mentioned above.

The rest of this chapter is structured as follows. A more detailed overview
of techniques such as prototyping, and execution, tracing and explanation
generation is given first. Then we present an overview of how these techniques
including filtering have been integrated in PPP.

6.2 Prototyping

Prototyping emerged in the early eighties as an alternative/supplement to the
phase-oriented way of developing systems. It is a basic component in the spiral
model [32] and very much acknowledges the fact that users’ requirements tend
to change when the consequences of their requirements are presented, that
is, when a concrete, tangible system is presented for the user. Subsequently,
active user participation is required for a successful prototyping session [4]. In
the literature, two major directions are frequently referred: throwaway proto-
typing [144, 145] and evolutionary prototyping [32, 71, 257, 386]. In addition to
the two major prototyping approaches, there exist techniques which address
more specific aspects: mock-up prototyping, and experimental prototyping. In
the following, the major characteristics of these directions are explained.

Throwaway Prototyping. The main purpose of throwaway prototyping is to
help the users to identify and stabilize their requirements. A main goal is
to build the prototype as quickly as possible — thus, the approach is often

186 6. Means for Achieving Pragmatic Quality

denoted as rapid prototyping. Furthermore, the prototype is experimentally
used as a learning vehicle for both users and developers in order to gain
more knowledge about the problem domain and the requirements to the fu-
ture system. Thus, a prototype should focus on requirements that are poorly
understood. The prototyping process is highly iterative. Several versions of
the prototype must usually be made before the requirements become stable.
As the name indicates, after a stable prototype has been built, it is “thrown
away”. The obtained requirements/domain knowledge is recorded, which was
the purpose of developing the prototype in the first place.

Evolutionary Prototyping. Whereas the prototypes are discarded in the pre-
vious approach, the main intention behind evolutionary prototyping is to
build prototypes which evolve into full information systems. In contrast to
throwaway prototypes, the initial prototype should cover those parts of the
domain knowledge that are well understood. Since users do not know all re-
quirements prior to development, the first version of the target system can be
used to play around with to gain valuable insight in the ”real” environment.
Also, it is expected that the remaining requirements may be clarified when
the “chain” of new prototype versions evolve into a finished target system.
This implies that a new version of the whole system is developed each time
a new prototype is made. This way of working requires prototypes with high
modifiability, and that a rather rigorous management must be employed.

Mock-up Prototyping. Mock-ups are prototypes which only reflects on the
external appearance of the system (screen, reports, dialogues) with limited
or no functionality [386]. Hence, no action is taken when data is input by the
user, but sample data may be included to show the formats of menus, data
entries, and reports. Often, mock-ups are thrown away after requirements
have been defined [71]. However, screen pictures may be expanded with some
functionality so that the user interface in operation can be validated. This
effect is exploited in Wasserman’s USE methodology [391].

Ezperimental Prototyping. is introduced by [119] and aims at determining the
feasibility of proposed solutions. Typically, experimental prototyping takes
place during the technical design of the system. It can be used to evaluate
the anticipated workload of the system (performance prototyping) or to select
appropriate hardware for the system (hardware prototyping).

6.2.1 A Taxonomy for Prototyping

These prototyping approaches mainly address how to rapidly create a proto-
type, and how long the prototype shall live during the development process.
Also, techniques like mock-up prototyping states what part of the target sys-
tem that should be should prototyped. Even so, the prototyping approaches
are quite limited. Questions like how much of the model should be prototyped?
or "how exact should the prototypes represent the behavior of the model?” are
not well answered in the prototyping techniques above.

6.2 Prototyping 187

To encompass a wider variety of aspects we may classify prototyping
techniques along six dimensions: focus, scope, depth, scale, rapidness, and
durability. The first four aspects are introduced by [317], whereas the last
two aspects are easily deduced from literature, and relates the prototype
to the time schedule of development projects. The aspects may be briefly
explained as follows:

1. Focus: i.e. what aspects (user interface, functionality, etc.) of the infor-
mation system model that are of concern for the prototype.

2. Scope: i.e. how large a subset of the model that is represented by the
prototype. There is a distinction between focus and scope [317]. Many
aspects are orthogonal to its functionality. For example, the user inter-
face of a system can be examined within a small subset of the system’s
functionality or across its full range.

3. Depth: i.e. how deeply a prototype represents the “behavior” of the
model. For example, a shallow prototype of a message system might dis-
play only ”canned” messages, whereas a deeper prototype might actually
perform communication to obtain a more realistic prototype of the target
system [317].

4. Scale: i.e. what volume of test data is provided for in the prototype.

Rapidness: i.e. how early in the project the prototype occurs.

6. Durability: i.e. how long a prototype live during the development pro-
cess before it is discarded.

ot

6.2.2 Prototyping Languages

A prototyping language is a language in which one can model system pro-
totypes. In this section we briefly discuss executable specification languages,
operational specification languages, and very high level languages (VHLL’s),
and their relationships to prototyping and executable CML’s.

Executable Specification Languages. The term ’specification’ is usually taken
to denote the 'what’ of a system at a particular level of abstraction. If re-
quirements are expressed in an executable specification language having user-
oriented constructs, these languages correspond exactly to what we have
called executable CML’s. As such, conceptual models in e.g. Tempora and
BNM can act as executable specifications.

However, the term executable specifications has also been used to denote
specifications at lower abstraction levels, e.g. for specifications at the level
of data types or subprograms. Examples include algebraic specifications (e.g.
van Horebeek [375] and Goguen [140]), and specifications expressed in logic
(e.g. DeVille [90]).

Operational Specification Languages. These were developed from the recog-
nition that the what/how issues are intertwined, and that the division made

188 6. Means for Achieving Pragmatic Quality

should rather be on problem-oriented versus implementation-oriented con-
cerns. Two examples are the PAISLey [408, 409] and Gist [19, 20] languages.
As operational specifications are closely connected to a particular develop-
ment, approach, we prefer to use the term ’executable CML’.

Very High Level Languages. These are most often general purpose program-
ming languages. The “very high level” indicates that complex data types
and operations are built into the languages. This results in more compact,
more declarative, and less efficient programs than those written in a tradi-
tional HLL. There are two ways to exploit these languages for prototyping.
One is to use them in a loosely coupled approach. Another alternative is to
use these languages as target languages when prototypes are generated from
an executable CML. As the constructs offered by VHLL’s are usually more
implementation-oriented than those found in CML’s, they are not that well
suited for conceptual modeling.

Example languages include 4GL’s and database programming languages,
PROLOG, and functional languages like MeToo [167]. 4GL’s are tailored
to development of database applications, and give opportunities to specify
tables, reports, screens etc. PROLOG provide lists as the primary data type,
but arbitrary complex terms may be used. Its clause resolutions provide a
powerful inference mechanism. Tavendale [365] and Weigand [392] both use
PROLOG for prototyping from conceptual models.

6.3 Execution of Conceptual Models

If the conceptual model is directly interpreted, the model is the prototype,
and no translations are necessary. If the model is translated to another exe-
cutable language, the differences in abstraction level and styles of expression
will affect the ease with which the translations are specified and implemented.
Here, we discuss three different categories of target languages: Traditional
high level programming languages (HLL’s), very high level programming lan-
guages (VHLL’s), and executable CML’s.

Ezecution by Direct Interpretation. Developing an interpreter is similar to
specifying a language’s operational semantics. To each construct of the lan-
guage, a semantic function is specified, which gives the computation to be
performed when that construct is recognized in the model. Consider the sim-
ple example a:=x Op y, where a is a simple variable, and x and y may be
complex expressions. When such a statement is recognized at run-time, it is
evaluated by first evaluating the values of x and y, and then the operation Op
is performed on the resulting values. Finally, the value returned by evaluating
the operation on the arguments x and y is stored for the variable a.
Although this example may indicate that developing interpreters is a sim-
ple task, it is not, for all but the simplest languages. CML’s may be rather
complex, both in the data structures and control structures offered. It may

6.3 Execution of Conceptual Models 189

be a challenge to develop an interpreter with an acceptable performance. As
an example, the interpreter developed for the Gist language was too slow to
be used for practical prototyping, so translations to a more efficient language
were introduced to get sufficient performance (Feather [112]).

However, when an interpreter has been developed, and the CML is rela-
tively stable, certain advantages are offered. Naturally, translations are not
necessary after each model revision, and hence the feedback loop is shorter.
Changes to models can be made in the editors, and tested on the fly. Also,
by controlling the execution through interpretation, it may be easier to link
the model execution to tools which provide supporting validation techniques
like e.g. explanation generation.

Examples of interpreted languages include Transformation Schemas in

Teamwork [30, 390], Statecharts in STATEMATE [161, 164], SXL [227],
PAISLey [408], and structured analysis languages presented by Lea and
Chung in [225].
Execution by Translation to HLL’s. Although some programming languages
have constructs for concurrent computations, for the most both data struc-
tures and control structures are relatively simple. They generally have a pro-
cedural rather than a declarative style of expression, and are characterized
by high performance. As HLL’s usually are the ultimate implementation lan-
guages for systems, it would be attractive to generate as much as possible of
the systems directly from their conceptual models. However, as the difference
in abstraction levels and in styles of expression (procedural vs. more declara-
tive) is quite large, translating a conceptual model into a program expressed
in a HLL is not easy. As an example, consider the problem of simulating a
database with instance manipulation and checking of constraints in a HLL.

Still, for certain aspects of a conceptual model, or for relatively simple
CML’s, translations to HLL’s are feasible. One example is REMORA [241]
where prototypes are generated in PASCAL with embedded SQL.

Execution by Translation to VHLL’s. As we described above, VHLL’s may be
suitable target languages for prototype generation from conceptual models.
Besides having built in more complex data types, these languages tend to have
a more declarative style than HLL’s, e.g PROLOG and 4GL’s. This is likely
to make translation specification easier, but the cost is likely to be decreased
performance. As these languages are primarily programming languages, their
constructs are not that of CML’s.

Examples of environments using VHLL’s include ARIES [190](a database
programming language called AP5), and REMORA [241](SQL) as explained
above.

Execution by Translation to Executable CML’s. If another executable CML
is used as a target language, it is assumed that a sufficiently efficient execu-
tor exist or can be developed for this language. Translations are likely to be
easier to specify if the target language is expressive, and provides the dom-
inating perspective(s) of the source language. As with VHLL’s, the price is

190 6. Means for Achieving Pragmatic Quality

usually slower computations. The target language may again be interpreted,
or translated to yet another language for efficiency reasons.

If the executor of the target language has sufficient performance, the po-
tential ease of translation specification and implementation gives a great ad-
vantage for multi-language environments, and for meta-CASE environments.
Also compared to the task of developing interpreters for each new language,
translations to an executable CML is easier.

We see examples of translations to executable CML’s in multi-language
environments like ARIES [190], where external languages are translated into
the internal representation language, and with Lubars’ general design repre-
sentation (GDR) [245].

6.3.1 Execution Mechanisms

An executable model is in many respects similar to a program. It can be in-
terpreted or compiled, it receives certain inputs and produces certain outputs
during execution. The similarities induce a need for mechanisms comparable
to those found in programming environments (Harel et al. [164]), particularly
as those found in program debuggers. By supporting features like step-by-step
interactive execution, (programmed) batch execution, breakpoints, spypoints
etc., the developers and users achieve better control of the execution.

Step-by-step interactive execution lets the users or developers respond on
behalf of the system environment, giving inputs as external events to the
executing model. The model responds to the events according to its specified
dynamics in a single step, which updates the model state. Further steps may
be initiated until the model reaches some equilibrium. After each step the
user can inspect the model state, and possibly report new events. Execution
in this fashion is found in e.g. Teamwork [30] and STATEMATE [164].

The alternative to this interactive mode of operation, is to store or pro-
gram all events on a separate file, and then run the models as batch jobs.
This naturally limits users involvement to observation of outputs, but it may
be useful if complex, variating scenarios of system use is to be set up. Pro-
grammed execution allows inputs to be represented as statistical distribu-
tions, as done when executing models written in simulation languages. In
STATEMATE [164], ezhaustive execution is proposed as a means to test crit-
ical components by generating all possible sequences of inputs, and check the
model for unwanted properties like deadlocks or unreachable states.

Further control can be gained by inserting breakpoints or spypoints in the
executable model, similar to their use in a program debugger. A breakpoint
is a statement, which, when reached, stops the execution to let the system
state be inspected, state components be updated etc. Spypoints are used to
record events for later inspection, or to report to users or other tools about
occurring events.

6.4 Tracing of Model Execution 191

6.3.2 Requirements to Tools Supporting Executable Conceptual
Modeling Languages

Here, we are only concerned with the support for executable CML’s. We
divide requirements into three categories. 1)Requirements to the CML’s used,
2) requirements to the model executor, and 3)requirements for facilities which
help in understanding the model execution.

Language Requirements. The CML’s expressiveness should be such that any
particularly uncertain aspects of the modeled systems can be investigated
through model execution. Naturally, the languages should be executable, but
we also require that they should not lead to intolerably slow prototypes. A
significantly lower performance than for the final system is expected, though
cf. Chap. 2.

Ezecutor Requirements. The basic requirement here is that executors should
take conceptual models as input, and either interpret them directly, or make
use of a translator to map them into an executable representation which
is then executed. During execution, inputs required and results produced
should be presented in ways comprehensible to the users, although a realistic
user interface is not expected from a prototype focusing purely on functional
aspects of the modeled system. Another requirement concerns the integration
with the modeling editors. To ensure a short feedback loop, it should be easy
to make changes to the models and subsequently start executions again to
observe the effects of model changes. Further, it should be possible to control
the execution in various ways, for instance by providing debugging aids like
step-by-step executions, breakpoints etc. Finally, during modeling, temporary
errors like incompleteness and inconsistencies should not necessarily make
model execution impossible. Rather, defaults could be added, or the users
could be asked for necessary information during execution, or only parts of
an overall model could be selected for execution.

Requirements for Understanding Fxecutions. There are various supporting
techniques which can be used to enhance the understanding of the observed
external behavior of an executing model. Ideally, the environment should
offer a battery of techniques like model animation, tracing and explanation
generation in order to cope with different execution situations. We will look
upon this in more detail below.

6.4 Tracing of Model Execution

From the literature, we find that execution traces are used for various pur-
poses.

192 6. Means for Achieving Pragmatic Quality

Program Debugging. When used for program debugging, execution traces of
programs can be inspected to search for errors made. This is especially needed
for concurrent programs which communicate with each other, and together
form very complex behavior (McDowell et al. [259]). More advanced use of
traces than mere inspection, are program visualization and replay of exe-
cutions. Replaying of executions are necessary because of the possibly non-
deterministic behavior of time-critical concurrent systems. The traces may
represent e.g. updates of variables, interprocess communications, procedure
calls etc. When an error is detected, the execution trace is compared with the
program to identify the cause(s) of the error. This search is normally man-
ual, guided by some hypothesis made beforehand. Some tracing components
provide effective means for browsing through traces, or for retrieving traces
much like database queries.

Paraphrasing System Dynamics. Execution traces tend to be very large and
complex, and the search for useful information is difficult. One way of de-
scribing the model dynamics, is to execute the model, record the occurring
events in a trace, and then paraphrasing interesting parts of the execution
trace. In Gist [359], symbolic execution traces are paraphrased by a ’behav-
ioral explainer’. It analyzes traces to find interesting fragments, and builds
up an explanation structure which is subsequently paraphrased into English
text. The main problems are to select relevant data from the traces, and
also to paraphrase proofs. The former problem is solved by applying a set
of heuristics, each which recognize a situation which is deemed useful for
the developers or users to know about. The latter problem is approached by
searching for instances of well-known inference rules like modus ponens etc.
There are no possibilities for users to ask specific questions, rather, they must
rely on the heuristics put into the explainer.

Another example of paraphrasing of execution traces is presented by
Kalita in [198]. There, natural language status reports are generated from
a set of inter-related processes described by Petri-nets. This system is similar
to the explainer in Gist, but it is based on concrete rather than symbolic
executions.

Validating Behavior. Benner [24] describes the use of execution traces in the
ARIES simulation component. He uses validation questions, which are pat-
terns of behavior, to search for desired or undesired behavior from the trace.
The patterns are sequences of events to be searched for in the temporal order
they are given. The patterns contain variables which are instantiated when
the patterns are matched with the trace being produced. A fully instanti-
ated pattern means that the specified behavior is observed, be it a desired
or undesired behavior. If a desired behavior is only partially matched, or not
matched at all, this means that the model has errors.

Ezplanation Generation. Explanation generators may be used both in the
development phases for model validations, and in the final system in or-
der to help the end-users. Most research on explanation generation rele-

6.4 Tracing of Model Execution 193

vant to our work has taken place in expert systems research, e.g. Basu et
al. [22],Chandrasekaran [59], Clancey [66], and Neches et al. [272]. As we
will briefly describe later on, these explanation generators are able to explain
more than execution traces. However, we will focus on their ability to rec-
ognize and answer a range of questions related to the behavior of executing
models below.

6.4.1 Requirements to Tracing Components

In this section we sum up some major requirements to a general tracing
components. Many of existing explanation generators do not have separate
tracing components, rather some intertwine the problem solving status with
their knowledge structures e.g. in RATIONALE [1]. However, these traces
tend to be rather simple compared to traces from executing conceptual mod-
els.

Language Independence A general tracing component should be adaptable to
different modeling languages and model executors. This can be achieved
by either basing the execution trace on a single, but very general schema,
or by allowing different schemas to be specified for each application. Note
that schema here is used in a general sense, it simply gives an intentional
description of execution traces.

Expressiveness Naturally, all data deemed necessary for later retrieval should
be traceable. The complexity and detail level of executable conceptual
models is comparable to that of programs. Hence, we should study the
tracing techniques used in programming environments. The data stored
in traces includes state changes, the reasons for state changes, and de-
pendencies and relationships between state changes. The latter includes
temporal and hierarchical relationships.

Event Reporting It should be easy to report about relevant events to the trac-
ing component, without disturbing the behavior of the executing model.
Also, it is important that the temporal ordering of events is maintained
in the trace.

Data Retrieval To make use of the stored execution trace, it must be possi-
ble to search for information in an effective way. For large and complex
execution traces, there should be facilities going beyond mere inspection.
As we noted above, different browsers and query facilities have been de-
veloped to study program traces. For explanation generation, particular
queries should be made available, so that data to include in explanations
can be easily retrieved. The form of queries supported should be based
on the questions users may ask about model behavior, and it should be
possible for a developer to use queries directly to understand executions
based on traces.

Non-functional requirements These concern the performance of the tracing
component, including efficiency and reliability.

194 6. Means for Achieving Pragmatic Quality
6.4.2 General Tracing Principles

The architecture depicted in Fig. 6.6 represents what may be called a
database approach to tracing. It is more close to the way execution trac-
ing is performed in program tracers than to the way it is performed in most
current expert systems.

110

Executor

Applications

Trace
retriever

Fig. 6.6. A general architecture of a tracing component

In the architecture, a model executor reports about occurring events as
necessary, for instance by calling specialized routines for each event category.
At the program level, events typically correspond to memory accesses, mes-
sage interchange, object access, procedure calls, tasking activities etc. In an
expert system, events may correspond to e.g application of rules, conclusions
reached, and hypotheses refined. In an executing conceptual model, events
reported may be about data flows sent, processes or activities applied, up-
dates of state components etc. Usually, a fixed set of events is defined, but
some systems provide event definition languages so that they can be more
flexibly specified. This tend to create a considerable overhead, because events
need to be detected at runtime.

Also, the detail level and the amount of data to be stored depends on the
future use of the trace. For instance, to replay executions in non-deterministic
situations, it is enough to store data which will resolve the non-determinism.
However, in order to explain execution behavior, it is expected that very
detailed data about the executions must be stored.

In any circumstance, the data to be stored must somehow be reported.
Usually, this is done by inserting probes into the executing model. The probes
are calls to routines which transfer data to a trace recorder, or they store data
directly into the trace. To do this, they must be placed at appropriate loca-
tions in the model. If the models are translated to prototypes automatically,
it is preferable to generate the probes as well. If the models are directly inter-
preted, then the probes may be integrated with the interpreter. In some cases,
the execution of probes may change the behavior of the executing program
or model. This may particularly be so in time-critical, concurrent systems,
as noted by McDowell [259]. We will not study this problem here.

6.5 Explanations Generation 195

Continuing towards the right of the architecture, the reported events are
stored in the order they occur by the trace recorder. The data is stored
according to a predefined schema, which includes attributes for temporal
ordering of events. Many systems use a global clock in order to achieve the
ordering, and mark starts and ends of intervals. This clock may represent the
actual time, or provide a state numbering, e.g. each time an event is reported,
the state number increases.

Finally, in the database approach, queries are used to specify the data to
be retrieved from the trace. For explanation generation, these queries form
the interface to the execution trace. Also other tools could use the execution
trace through the interface provided with trace queries, and if they are made
user-friendly, developers can use trace queries directly.

6.5 Explanations Generation

As a provisional definition, let us assume an explanation to be a text, or
a combination of text and graphics, that describes a phenomenon and satis-
fies some user’s need for information. Although vague and superficial, this
definition suffices for the presentation to follow here. We make the general
assumption that both the content and the structure of an explanation should
vary according to the properties of the user requesting the explanation, the
reasons for requesting it, and the context in which it is requested.

What this indicates, is the explanations’ dependence on general text lin-
guistic theories about how humans communicate with each other. Let us then
take a typical conceptual modeling process. We can distinguish between two
process activities, the construction and the wvalidation of models, assuming
both to be able to take advantage of explanation generation technologies. In
the modeling, there are people involved that bring with them different roles,
skills, and attitudes.

In the following, we will demonstrate the usefulness of explanations with
reference to the construction and validation of conceptual models, using il-
lustrations from a bank system.

6.5.1 Construction of Models

Ideally, the modelers have intimate knowledge of both the syntax and the
semantics of the conceptual modeling language. They feel comfortable with
the language, and find it easy and effective to use in the modeling process.
In practice, though, one cannot always assume this to be the case:

— Formal languages are notoriously detailed and complex. The emphasis on
compact, unambiguous and effective ways of representing information re-
flects a gap of philosophy between these languages and natural languages
that is not easily bridged.

196 6. Means for Achieving Pragmatic Quality

— Since a single modeling language is usually attributed to only one per-
spective of a system, one will often have to switch between languages, or
use several in combination. This complicates the learning of the languages,
since one do not get the time to develop a proper understanding of them.

— To an increasing extent, domain experts or end-users are getting involved
in the modeling process. These cannot always be expected to know and be
familiar with the conceptual modeling language used in the project.

— The complexities and uncertainties of the domain itself make it difficult to
concentrate on the details of the modeling language. Since it is more im-
portant to investigate the domain than to construct a syntactically correct
model in the beginning, complicated features of the language tend to be
neglected if they disturb the analysis of the domain.

In search of improvements in conceptual modeling, a wide range of works
has been done withing the fields of modeling languages and tool support.
Abstraction mechanisms, user-oriented concepts and graphical symbols are
now generally recognized as important to a language’s comprehensibility, but
the effect of these strategies is hampered by the overall need for formal and
expressive languages. And even though tool support like syntax-oriented ed-
itors, model checking routines, and help facilities is now often included in
modeling environments, there are still problems with the comprehensibility
of the modeling process.

Explanations can help the modelers with the language’s syntax and se-
mantics, and if a verification module is included in the environment, they
can also provide an interface to error messages from verification checks. Ver-
ification rules may be classified as a priori or a posteriori [379]. An a priori
rule can never be violated (e.g. A flow in a PrM model can never go from one
store directly to another), whereas an a posteriori rule can be temporarily
violated in the modeling process as long as the final model obeys the rule
(e.g. all processes in a PrM model must have at least one output flow).

In connection with the construction of conceptual models, there are at
least two important explanation contexts, the meaning context and the ref-
erence context. In the meaning context, the focus is on how terms refer to
underlying meanings, in the reference context on how terms refer to con-
structs of the modeling language.

Language semantics. The modelers can ask questions concerning the mean-
ing of language concepts. Since the semantics of conceptual modeling lan-
guages seldom are explicitly represented, we will probably have to suggest
— rather than to precisely specify — concept meanings. It is possible, how-
ever, to indicate semantic properties by describing for example the concept’s
type, purpose and/or structural relationships to other concepts. Consider the
dialogue below:

6.5 Explanations Generation 197

user: “What is a process?”

system: “A process is a dynamic concept that generates a number of outflows on the basis of a
number of inflows. Its content is described as a separate diagram or as a set of process

logic rules. It is triggered by the arrival of a flow.”

The first sentence tells us about the type and purpose of processes,
whereas the second one says how they are related to other language con-
cepts. In this context, the question was assumed to refer to the underlying
meaning of processes (i.e. the meaning context was used). Looking at a con-
ceptual model a user might also wonder what graphical symbols are referring
to processes. She is then in the reference context, and the question “What
is a process?” could then lead to the graphical explanation in Fig. 6.7. Note
that explanations with graphical elements involve the generation of views of
the conceptual model.

New cust oner

data [\

[name, P3

classification, .
dCt;ts;orrer i ncone] Process Recolr:rm?fdatl on
P _.‘ | oan [result,offer]
classification, = request
i ncone] Request ed

| oan

[anount]

This is a process. P3 is a process.

Fig. 6.7. An explanation showing what a process looks like

Language syntaz. Questions concerning syntactic properties of the modeling
language are all in the reference context. They request information about
how constructs of the language are related to other constructs, and can draw
on a priori rules as well as a posteriori rules. The question below refers to the
processes used in PrM .

user: “How are processes used?”

system:

“A process has an identifier and a purpose. It must receive at least one data flow
and send at least one data flow. All the inflows must be included in an input port
construction, all the outflows in an output port construction. At least one inflow must
be marked as triggering. A process’s content is described as a new diagram or as a set
of process logic rules.”

If the system has reasons to believe that the modeler is familiar with the
traditional data flow diagrams, it can leave out certain structural properties
that are already known to her:

system:

“All inflows to a process must be included in an input port constructions, all outflows
in an output port construction. At least one inflow must be marked as triggering. A
process’s content is described as a new diagram or as a set of process logic rules.”

198 6. Means for Achieving Pragmatic Quality

In this way, the response is tailored to the user’s knowledge. If the user
has no experiences with process-oriented languages, the original explanation
accompanied by a model example like the one of P3 in Fig. 6.7 could be
appropriate.

Verification checks. Most modeling environments include syntax-oriented ed-
itors, in which only constructs from the alphabet of the language are available
in the modeling process. The environment will usually also offer some rou-
tines for checking the syntax, the consistency, and internal completeness of
the model being built. If these verification routines are run on the model in
Fig. 6.8(a), for example, the lack of flows out from the process is detected,
and the explanation below might be generated:

New cust oner

data s1 |
framsi v
cl assification,

dOJtSt omer Locome Process

at a

| oan

[name,

classification, ————————————5> request

i ncone] Request ed 2 |
| oan

[anount]
(a) (b)

Fig. 6.8. Illegal constructions in PrM . In (a) an a posteriori rule is violated, in
(b) an a priori rule

system: “The diagram is illegal, since P3 does not produce any flow. A process must produce
at least one flow.”

The rule used above is an a posteriori verification rule. If a flow connects
two data stores — as is the case in Fig. 6.8(b) — an a priori rule is violated
and we can get a message like the one below:

system: “The origin and the destination of a data flow cannot both be data stores.”

Note that a good editor would not allow the user to violate a priori verifi-
cation rules. In that case, an explanation component could be used to inform
the modeler why her construction was not accepted.

6.5.2 Validation of Models

The product of modeling is a conceptual model that serves as a basis for
the design of the information system. Since conceptual modeling is an iter-
ative process of model building and model analysis, though, there will be
many partial and temporary products before a final, satisfactory conceptual
model has evolved. An important task in the analysis of these products is to

6.5 Explanations Generation 199

determine their appropriateness with respect to user’s needs and intended re-
quirements, i.e. model validation. In order to do that, the parties involved in
the modeling must be able to understand the properties and the consequences
of those parts of the models that are relevant to them.

Apart from the formality and unfamiliarity of the modeling language,
though, these models may be hard to validate due to their scope and com-
plexity.

— The scope of the conceptual model concerns both the number of phenomena,
modeled and to what level of detail they are described. In many cases, the
model includes much more information than what is relevant to a particular
user reading the model. The large scope of the model can disturb the user’s
ability to concentrate on and validate those parts that she is knowledgeable
in.

— A conceptual model of an information system easily gets very large and
complex. There are perceptional problems in reading very intricated mod-
els, and the details of these models tend to overshadow their overall struc-
tures and behavior.

So, in realistic information systems development projects, even models
represented in familiar and not so formal languages can be hard to interpret
due to the inherent complexities of information systems.

Strategies for enhancing user comprehension. The previously men-
tioned strategies for improving the comprehensibility of modeling languages
have also profound effects on the validation of the corresponding models. In
addition to these, there are other strategies that expose model properties
through heavy analyses or model manipulations, like view generation, model
ezecution, and model translation. These strategies are all valuable, though
they are restricted to specific aspects and have certain limitations.

What validation is concerned, explanations can help the users read the
conceptual models correctly. If modeling decisions are recorded, they can also
justify the inclusion of elements in the model. At last, they can guide and
explain executions of these models, and in that sense they provide an interface
between executable model or trace, and user.

Model inspection. The users can ask questions about properties of the concep-
tual model. The questions may be related to structural or dynamic properties,
and the answers are user-tailored and context-dependent. An explanation can
be adapted to the user and the context, as indicated by the three alternative
explanations below:

200 6. Means for Achieving Pragmatic Quality

user:
systemi:

systems:

systemas:

How is P2 Register customer activated?”

“P2 is activated when either Customer_name is sent from the user or No_registration
is sent from P1. The user sends Customer_name if she wants to register a new cus-
tomer. Pl checks the customer and is triggered by a Loan_request from the user.
No_registration is sent if the customer is not found in the database and No_customer
is returned to P1.”

“P2 is activated when either Customer_name is sent from the user or No_registration
is sent from P1.”

‘P2 is activated if the user wants to register a new customer or a customer not already
registered requests a loan.”

The first explanation could be suitable for a modeler inspecting the de-
tails of the model. The next explanation could be used in the same inspection
context, but in this case either the user knows the details left out from the
first one or the context makes the origin of Customer_name and No_registration
irrelevant. In the third one, we have changed to a context where user’s inter-
action with the system is emphasized. The explanation could be given to a
user unfamiliar with the details of the system, but with a good understanding
of how the system is expected to be used.

The next dialogue illustrates how different levels of abstraction can be
exploited to tailor a particular explanation:

user:
systemi:

systems:

“How 1is Loan_limit computed?”

“Loan_limit 18 produced by P3.1. If New_customer data 18
received, then Loan_limit.maximum = New_customer_data.income. Loan_limit.name is
set to New_customer_data.name. If Customer_data is received, there are three cases:
If Customer_data.classification is 'bad’, then Loan_limit.maximum is 0.

If Customer_data.classification 1s
‘neutral’, then Loan_limit.maximum s Total_savings.savings + Customer_data.income
- Total_loans.loans.

If Customer_data.classification
is 'good’, then Loan_limit.maximum is Total_savings.savings + Customer_data.income
- Total_loans.loans.

Loan_limit.name is set to Customer_data.name.”

“Loan_limit is computed on the basis of Totalsavings, Total_loans, and either
New_customer_data or Customer_data.”

The first explanation describes in detail how Loan_limit is computed, and
would be appropriate when the model is validated by users very knowledge-
able in the domain. The second one gives a functional overview of the compu-
tation. It is assumedly most helpful in situations where the overall structure
of the model is in focus, or the user cannot be expected to be able to get
anything out of all the details or be able to comment meaningfully on the
basis of them.

The following dialogue is an example of a request about structural prop-

erties:

6.5 Explanations Generation 201

user: “What is the content of flow Loan_request ?”
system: “Loan_request contains two items, name and amount.”

Of course, the content of these explanations could also differ according to
explanation context and user characteristics.

Modeling deliberations. Modeling deliberations typically express the argu-
ments for including elements in the conceptual model. They can be made a
part of the conceptual model, and can be used by the explanation generation
component to justify the content of the model.

Consider this typical question about modeling deliberations:

user: “Why is P2 needed?”
system: “P2 s needed because the bank must be able to accept new customers.”

Depending on the sophistication of the recorded deliberations, we can
justify the inclusion of elements (as above), explain why elements are con-
sidered a correct representation of some phenomenon, or in general provide
arguments that support or refute the existence or use of model elements. Pro-
vided that more detailed deliberations are included in the conceptual model,
the following dialogue could be possible:

user: “Why is P2 correct?”

system: “To register a new customer, only her name and income is necessary. Since the bank
has not served the customer before, no classification is available, and it seems reason-
able to assume a ‘neutral’ classification to start with.”

Modeling deliberations are seldom formalized, so the explanation compo-
nent’s task would normally be to track the appropriate arguments and just
make them available to the user. In the conceptual models, deliberations are
modeled as special kinds of model elements and are linked to the other ele-
ments of the model. We will from now on not distinguish between conceptual
model and modeling deliberations, but assume that a conceptual model may
include deliberations in addition to the other kinds of information.

Model ezecution. Explanation generation technology can be combined with
the execution of conceptual models to explain both the external and the
internal dynamics of models. This requires, however, that the behavior of the
models during execution is well documented in the form of detailed traces of
computations and instantiations. Additionally, since executable conceptual
models do no include any complete user interface specification, explanations
can be used to explain what the system is doing and why certain inputs are
necessary.

The two dialogues below illustrate the use of explanations in model ex-
ecution environments. In the first dialogue, two possible explanations are
included, each of them tailored to a specific context and/or user.

202 6. Means for Achieving Pragmatic Quality

user: “Why was the loan application rejected?”

systems: “The requested loan was $100,000. The loan limit was $80,000. Using the rule

If Loan_limit.maximum s less than Requested_loan.amount,
ommendation.result = rejected and Recommendation.offer s
Loan_limit.maximum;

it was decided to send Loan_rejection.”

systems: “Because the requested loan was $80,000, the customer’s income $50,000, her classi-
fication ‘neutral’, her total savings $50,000, and her total loans $70,000.”

The dialogue below helps the users in the execution of the conceptual
model.

user: “Why do you need Customer_income?”

system: “The customer was not registered. I need the customer’s income to register the cus-

tomer and to process the loan request.”

In more advanced execution environments, symbolic or hypothetical execu-
tions are available. In symbolic executions, symbolic inputs are used instead
of concrete values, and a trace specifying all the possible execution paths is
generated. Hypothetical executions are typically initiated by “What-if ” ques-
tions and force the execution environment to investigate the consequences of
inputting certain values or using certain alternative model elements in the
execution.

6.6 Support for Model Comprehension in PPP

In this section we will use the following example to ilustrate the techniques
for model comprehension in PPP. Only some of the process models and one
PLD is shown.

6.6.1 Example

A customer of the bank can have several accounts and loans registered. All
customers are identified by an id, but the bank also keeps the customer’s
name, address, and classification. The classification is the bank’s judgement
of the credit worthiness of the customer, and is assigned one of the values
good, neutral, or bad. Customers are divided into two categories, institution
customers and person customers. Associated with an institution customer is a
set of users, i.e. names of persons authorized to use the customers’ accounts.
The salary of person customers is also kept. The accounts have an identi-
fying number, a balance, and an interest rate, while a loan is characterized
by a loan id, interest rate, date granted, initial loan amount, and balance.
Associated with loans is a payment plan that says how they are to be paid

6.6 Support for Model Comprehension in PPP 203

back in terms of smaller reqular payments. A payment is registered with an
id, a date of payment, a due date for the payment, and an amount. Transac-
tions on the customers’ accounts contain information about the transaction
id, the amount to be deposited or withdrawn, the date, and the transaction
type (either deposit or withdrawal).

There are four functions in the systems:

— The customer can apply for a loan,

open an account,

— deposit and withdraw money, and

monthly statements of accounts are sent to all customers on the first day
of each month.

Applying for a loan, the customer must first have opened an account in the
bank and cannot have been classified as a bad customer. The requested loan
amount is compared to her salary, current loan, and current bank account
balances, and the bank may offer either the requested loan or a somewhat
smaller loan.

If the customer is to open an account for the first time, she must also be
registered and given an initial classification as a neutral customer. If she is
already registered, the new account is just added to the existing bank accounts.

A new transaction is first checked to find its category (deposit or with-
drawal), and to see if the specified account exists for the customer. A with-
drawal is then checked to see if the balance exceeds the requested amount. If so,
the customer gets a notice, and must respond with a lower amount. She can
abort the transaction by giving a zero in response to the request. The verified
withdrawal transaction is then processed by updating the customers account.
A deposit is processed directly. In both cases, information of the processed
transaction should be given to the customer, and stored for later use.

PPM Models. A top level PrM model for the bank system is shown in
Fig. 6.9.

P1:Process transaction consists of five subprocesses, P1.1 through P1.5, as
shown in Fig. 6.10.

A PLD Model. Figure 6.11 shows the process logic of process P1.2 repre-
sented in a PLD model.

6.6.2 Overview of Techniques

An overview over the comprehension support techniques in the PPP tool is
given in Fig. 6.12. Three different techniques are shown as well their integra-
tion. The heart of the architecture is the PPP conceptual model. This model
can be transformed into an executable program, a model view, and/or a ezpla-
nation. By executing the program an execution trace is generated. The trace
contains information about the dynamic properties of the model. Informa-
tion from this trace is used to produce ezplanations. These explain observed

204 6. Means for Achieving Pragmatic Quality

Loan_offer No_loan

New_withdrawal Transaction

Customer
ustomel
Loan Loan
Account_statement-{---{-+- ‘application rejection
Aborted_transaction-{---{- 17| ., Loan_ 52
Withdrawal_rejection-{--- | ./ decision | i
Invalid_transactiorr- Signature
T
P1 T T Process _‘\1
_________________ = loan)T
F application)_J T
7 |Process B\ T / : pp Signed
i T _
:| transaction _E\) /I J comiract
= / New_ /
balance .
.............................. Balances Processed_transaction
Previous_balance / |
Customer_view dC:tsatomer |D2 Account_view |D3| Transaction_view
Transactions
Old_ Account_
customer New_customer data pa
Issue
t-1| Open Account LeLT| | monthly [T
t =T L Monthl
T accoun account onthly_
| Statement T statementg statement
schedule —

T1
EIFirst of [
" month |f

C

Fig. 6.9. Portions of a PrM model for the banking system

behavior in response to questions posed by users or developers. This expla-
nation module may also exploit views of the model. Combining the pictorial
view of the model and the textual explanation, multi-media explanations are
supported.

We will now present the techniques individually below. The integration
aspect will be emphasized by illustrating the various transitions between the
supported techniques.

6.6.3 Code Generation

Within the PPP environment several translation assistants has been devel-
oped. In addition to the two main assistants with Ada and TEQUEL/C! as
target languages, the following main translation assistants have been devel-
oped in relationship with the PPP environment:

Translating PPP models to Simula/Demos By transforming PPP models to
programs in Simula/Demos [158], behavior of real-world phenomena can
be simulated. The PPM and PLD languages are slightly extended to
accommodate this feature, especially for sampling of values from prob-
ability distributions. Using simulation models, non-functional properties

LA description of TEQUEL is given in Sect. 6.6.5.

6.6 Support for Model Comprehension in PPP 205

P1 decomposed AT

Withdrawal .
rejection Aborted_transaction

New_withdrawal (P12)
ﬂ Verify ey T
)

Account_
statement

T Withdrawf

amount Withdrawal_result

_) \ J— Ok_with-
Invalid_transaction |Withdrawal_ drawal

Al transaction
5 P11 T P13
Transaction T Verify T

T Deposit
—= | trans— H————
; amount = Deposit_result
action —/Deposit_ post]

“—— transacfior————

Previous_balance

New_balance New_balance Processed_
transaction

Fig. 6.10. A decomposition of transaction processing

like performance and reliability can be validated. Validation is supported
by various traces and statistical reports generated during execution.

Translating ONER Models to SQL A model of the database can be repre-
sented in ONER. Going directly from conceptual models to program
code, the PPP environment transforms the ONER model to SQL state-
ments that define the corresponding database. No additional statements
are necessary to construct the database of the system. Since ONER re-
sembles the traditional ER language, the transformation algorithm is
almost similar to the ones used on ER models (see for instance [372]).

Translating PPP/UID Models to C/Motif The user interface model, repre-
sented in UID, is transformed to a combination of C code and Motif
code [193]. The translated code is complete and runnable, but in the
current implementation, it is not integrated with the rest of the envi-
ronment. Further work in this area is currently taking place. The main
motivation for including the transformation is to enable prototyping of
user interfaces.

In the sequel, we will concentrate on the two assistants that translate:

1. PPP models to Ada and
2. PPP models to TEQUEL/C

They are presented in Sections 6.6.4 and 6.6.5, respectively. The overall
translation strategies are described and some selected translation rules will
be included to the extent they shed light on the strategy.

206 6. Means for Achieving Pragmatic Quality

Start

Receive
Withdrawal_transaction
from Verify_transaction
account_id: INTEGER,;
account_balance: MONEY
name: STRING
amount: MONEY;
date: DATE;

selection account_balance<amount

.Send Withdrawal_rejection
to Customer

"Error — Available amount is:";
account_balance;

Receive New_withdrawal
from Customer
new_amount: MONEY;

amount:=new_amount

selection amount=0 OR else
amount>account_balance

Send Aborted_transaction Send Ok_withdrawal
to Customer to Withdraw_amount
account_id; account_id;
account_balance; account_balance;
name; name;

amount; amount;

date; date;

Fig. 6.11. A PLD describing process P1.2

6.6.4 Translating PPP Models to Ada

In this section we will take a closer look at the assistant for translating
PPP model to Ada code. The main structure of the translation strategy will
be outlined and the validation properties of the generated prototypes are
discussed. The following presentation is very much based on [240].

The Overall Translation Strategy. As with all our assistants, the moti-
vation for using Ada as a target language is based on semantic considerations
rather than on the need for an efficient implementation of an Ada program.
Thus, the semantic correspondence between PPM/PLD and Ada is exploited
so that translations easily can be established. The most important arguments
for translating PPM/PLD models into Ada can be informally stated as fol-
lows:

— PLD diagrams may be executed in parallel, and except for the exchange
of data these diagrams run independently of each other. Transforming to
Ada, we could let Ada tasks implement the PLD diagrams without any
code controlling their execution.

6.6 Support for Model Comprehension in PPP 207

multimedia execution
explanation trace

< >

p— < >

- - <o >
p— <ien >

!

}_i O

model view

conceptual model executable
program

Fig. 6.12. Integrating techniques for the support of model comprehension

1. For every PLD diagram create an Ada task.

2. Sending and receiving data between processes is translated to ren-
dezvous in Ada.

3. User communication is achieved by requesting data from the termi-
nal and sending data to the screen.

4. Every task contains an outer infinite loop construction and a block
corresponding to the PLD model which the task represents. The loop
allows the PLD diagram to wait actively for triggering inflows that
activates the task.

5. Boxes in PLD diagrams are interpreted as actions. Consecutive boxes
are implemented as consecutive Ada statements, such that construc-
tion i corresponds to box i. A PLD block appearing to the right of
a choice or an iteration box, forms the scope of the box. It is trans-
lated to an Ada block and placed inside the scope of the construction
corresponding to the PLD box.

Fig. 6.13. The overall translation strategy for generating Ada code (From [240]).

— The PLD diagram is a block-structured algorithm that is easily trans-
formed to a structured language like Ada.

— The ports in PPM (and the corresponding constructions in PLD) allow for
rather complex patterns of process communication. The rendezvous mech-
anism in Ada makes it possible to encode the same complex communication
patterns for tasks.

These features of Ada made it possible to translate a PPP model to Ada
code. The overall translation strategy is shown in Fig. 6.13. Details of the al-
gorithm has been formalized as a set of translation rules. In Fig. 6.14 we have

208 6. Means for Achieving Pragmatic Quality

- Translation rules

(@)

—start N\

PLD block

TASK BODY <p_name> IS
<var_list>
BEGIN
TASK_CYCLE: LOOP
<Ada block>
END LOOP TASK_CYCLE;
EXCEPTION
WHEN TASKING_ERROR => TERMINATE;
END <p_name>

)

(b}

[selection /= /<expr 1>

/ <expr 2>

| PLD block | PLD block

IF <expr 1> THEN
<Ada block 1>
ELSE
IF <expr 2> THEN
<Ada block 2>
ELSE
NULL;
ENDIF;
ENDIF;

while <expr> > PLD block

WHILE <expr> LOOP
<Ada block>
END LOOP;

—(e)

receive <flow> from <a_name>;
<item_list>

put(<expl_text>); get(var_1);

'p'ut(<expl_text>); get(var_n);

—(f)

send <flow> to <p_name>;
<expr_list>

<p_name>.<flow>(<expr_list>);

—(d)

Receive <flow> from <process>;
<item_list>

SELECTION

END <flow>;
OR

END SELECTION;

ACCEPT <flow>(<internal_var_list>) DO
<item_1> :=<internal_item_1>;

<var_n> :=<internal_item_n>;

ACCEPT shut_down;
EXIT task_cycle;

—~9)

send <flow> to <a_name>;
<expr_list>

put(<expl_text>); put(expr_1);

.piht(<expl_text>); put(expr_n);

Fig. 6.14. Some selected translation rules the

“PPP-Ada assistant” (From [240])

shown some selected translation rules using the graphical notation for such
rules from Broy [42]. Different patterns in a PLD model and their associated
Ada statements are indicated. The main task of the implemented transfor-
mation algorithm is therefore to detect different patterns in the PPM/PLD
model that are defined by the translation rules and translate them into their

Ada counterpart.

— PPP model

6.6 Support for Model Comprehension in PPP

-
l““‘

Ry
“““
.

User communication

aant

209

TASK BODY p1 21S
account_id:INTEGER;
account_balance,amount,new_amount:MONEY;

name:STRING;

date:DATE;

BEGIN

task_cycle: LOOP
SELECT
ACCEPT Withdrawal_transaction(varl:INTEGER;

var2:MONEY;
var3:STRING;
var:

4:MONEY;
var5:DATE) DO
account_id:=va

date:=vars;
END Customer_account;

OR
ACCEPT shut_down;

El

EXIT task_cycle;
ND SELECT;

IF account_balance>amount THEN

El

pl_3.0k_withdrawal(account_id,account_balance,name,amount,date);
LS

E

PUT(

PUT("Error - Available amount is:");

PUT(account_balance);

PUT("Flow from agent: New_withdrawal<-");
GET(new_amount);

IF new_amount<=account_balance AND new_amount>0 THEN

"Flow to agent: Withdrawal_rejection ->");

pl_3.0k_withdrawal(account_id,account_balance,name,new_amount,date);

ELSE

PUT(account_id,account_balance,name,amount,new_amount,date);

END IF;

ND IF;

END LOOP task_cycle;

EXCEPTION

WHEN TASKING_ERROR => TERMINATE;
END p1_2;

Ada code

Fig. 6.15. An overview of the Ada translation process

210 6. Means for Achieving Pragmatic Quality

It must be added that the translation schema is a bit more complicated
than what the rules in Fig. 6.15 could suggest. In additional to these rules, we
have more complicated rules handling complex PLD patterns. In particular,
when receive constructs are placed inside the scope of selection or iteration
constructs, complex rendezvous statements in Ada can be generated. Anyway,
the rules in Fig. 6.15 should give a good indication of how PLD models are
implemented as Ada tasks.

Figure 6.15 gives an overall picture of how our PPP model of the bank do-
main is translated to an Ada program. By following the translation algorithm,
we end up with a set of communicating tasks and every task corresponds to
a PLD model. The details of the Ada code for the task generated from P1.2’s
PLD model from Fig. 6.11 is also shown in the figure.

Execution and Validation. Execution of the Ada code relies on the mecha-
nisms provided by the Ada environment. There is no main loop that controls
the execution of tasks, so all the tasks are automatically activated as the
program is started. When the program is terminated, the terminating task?
sends a shut-down message that kills all tasks of the program.

In the following session, we will show how the generated prototype may
be used to uncover invalidities hidden in the model.

Assume that an early version of process 1.2 and its corresponding PLD
model as shown in Fig. 6.16. Here we see that the process has an output port
of AND type.

Start
Receive
Error Withdrawal_transactior]
. Aborted_ from Verify_transaction|
transaction account_id: -~ INTEGER,;
P1o Y account_bal: MONEY;
. H name: STRING;

) i amount: MONEY;
¥ date: DATE;

. T
P1.1 :| Verify | Send Ok_withdrawal
T amount P14 to Withdraw_amount

— Ok_with— account_id;

Withdrawalw drawal account_bal;

wal_~ name;
transaction

new_amount;
date;

.Send Aborted_transaction
to Customer
"Error — Available amount is:};

account_bal;

Ve,
0
',"'
‘e
"

o,
"
'
LI L

Fig. 6.16. An early version of process P1.2 and its corresponding PLD model

After code has been generated from this model, the dynamic properties
of the model can be examined. The first one notices is that the program

2 Terminating task corresponds to a special process (PLD diagram) defined as
‘terminating’ in the model.

6.6 Support for Model Comprehension in PPP 211

aborts the transaction regardless of the values of amount and account_bal.
Thus, the customer always receives the error-message defined in the PLD
model. To correct the error, the output port must be substituted with a new
port of XOR type. Doing so, the process will evaluate whether the amount is
accepted — ok_withdrawal is sent — or (exclusively) it aborts the transaction
— aborted_transaction is sent.

An execution with this error or with the corrected version might reveal
that the interaction with the process is limited. That is, the process does not
encourage a correction of amount if amount > account_bal. So, a more flexible
process that allows for correction of amount during the process execution
results in the model shown in Fig. 6.11.

Evaluation. The description above shows the feasibility of translating PPP
models to Ada code. The Ada program runs, and its functionality complies
with the intended interpretation of the PLD language. In that sense, the
generator provides valuable prototypes of the functional properties of the
system.

The main weakness concerning the validation properties is that the proto-
type relies too much on the Ada environment. Different execution mechanisms
like step-by-step execution, breakpointing, tracing etc. described in Sect. 6.2
are limited in this environment. Moreover, direct feedback of the execution
to the PPP model in form of animation is hampered by incompatibility in
the Ada and PPP environments. Thus, the validation of the model will in
many ways resemble program testing. One can detect the presence of errors
and misconceptions, and hopefully correct them through model inspection.
However, one can usually not be certain that all such errors and misconcep-
tions are detected. Still, with the possibility to execute conceptual models,
we have better facilities to validate dynamic model properties.

It should be stressed that the generated code is of prototype quality and
is thrown away after the model has been validated. That is, the transla-
tion has ignored design knowledge that affects the efficiency and effectiveness
of the code. Particularly, the two most important ones concern the code’s
modularization and efficiency. An obvious problem in this respect is the in-
appropriateness of having all the tasks run concurrently. The generated code
is a flat structure of Ada tasks, and it is usually quite difficult to analyze
or modify it. This is not a major drawback as long as the program are only
generated to prototype the system. But if this prototype is to be modified,
e.g. to include a more realistic user interface or to build the real system code,
the lack of modularization could hamper the work. Suggestions for meeting
some of these problems are given in [150].

The long term goal of supporting the complete life-cycle requires that
prototype can evolve into the final information systems with acceptable per-
formance. This further requires that more design knowledge is represented
as translation rules, so that a modularized and efficient system can be gen-

212 6. Means for Achieving Pragmatic Quality

erated automatically, or semi-automatically with guidance from the system
developer.

6.6.5 Translating PPP Models to C and Prolog

In this section we will take a closer look at the assistant for generating C
and Prolog code from a PPP model. This approach applies a temporal rule
manager built on top of standard prolog, and a parser for a programming lan-
guage for representing temporal rules to be applied by the rule-manager. This
programming language has been developed at Imperial College, London [293]
in the scope of Tempora. The rules are on the form [212]:

formula about the future <= formula about the past

These rules are evaluated with respect to a particular state in a temporal
database, yielding a number of formulae about the future which must be
made true, if not already true.

The main structure of the translation strategy will be outlined and the val-
idation properties of the generated prototypes are discussed. The interested
readers is referred to [206, 237, 238] for a more complete documentation of
the translation assistant.

The Translation Strategy. In general, Prolog is used in this approach for
the representation of the database, timers, and the temporal relationships
between the processes. The processes represented as PLD’s on the other hand,
is represented as C-functions.

User View of the Execution and Validation. User involvement during
the execution is central for model validation. In connection with the work
presented here, we have identified three major tasks where the user can par-
ticipate: (1) setting up the execution session, (2) viewing the execution trace,
and (3) inspecting the temporal database. The tasks are briefly explained in
the sequel.

Setting up the Execution Session. An execution session is set up by defining
the test data. That is, the initial database content and the external events
which are invoked during execution. Both aspects should reflect the situation
in the problem domain.

We here assume that the initial database content is as indicated in
Fig. 6.17a. For simplicity reasons, we have only shown the information that
is relevant for processing a transaction. Thus, the database is loaded with
one customer, Odd lvar, who has account account 1001 with balance 5612.

Here, we define the execution to last for 10 ticks (here minutes) which
should cover the period of processing a transaction. During the period the
user invokes the external events that are shown in Fig. 6.17b. At minute 1,
Odd lvar issues a withdraw transaction on account 1001 with amount 6000.
As will be evaluated, the account number is wrong and a new transaction

6.6 Support for Model Comprehension in PPP 213

External events

transaction(1,1002,6000,W).

Initial database

customer(Odd Ivar,1001)

transaction(2,1001,6000,W).
new_withdrawal(4000)

account(1001,5612)

@) (b)

Fig. 6.17. Test data for the execution session

(2) is issued at minute 3. This time the account number, 1001 is correct, but
the amount is too high compared to the available amount. Odd Ivar is given
a last chance and issues a new_withdrawal transaction amounted to 4000 at
minute 6. This will be accepted.

The external events describe an execution session. In the following we
will explain how the user can interact with the Rule Manager during the
execution.

Viewing the Execution Trace. The Rule Manager executes the generated pro-
totype on the basis of the initial database content and the external events.
Here, the Rule Manager uses a textual interface for user communication.
The execution trace shows the situation at each tick and allows for invoking
external events.

In Fig. 6.18, the execution trace of our example as it is produced by the
Rule Manager is shown. External events are entered at the ticks (minutes)
described above. Moreover, the internal events like triggering and terminating
flows are indicated as well as the actions — execution of the process. Response
to agents is given as plain text.

Inspecting the Temporal Database. In addition to the execution trace, the
Rule Manager provides a temporal database throughout the execution.
Roughly speaking, the content of this database represents the historic view of
the execution. By inspecting the temporal database, it can be learnt within
what time period the collected execution information has been valid.

In Fig. 6.19, we have shown some of the tuples of the temporal database
after the execution. Each tuple is time-stamped with a start-time and an end-
time indicated in which time period of the execution the tuple was valid.
The initial database from Fig. 6.17a is recorded in the tuples 1 and 2. These
tuples are permanent during the execution. This is indicated by start-time
and end-time being 0 and 99999, respectively.

Furthermore, the temporal database records external events, internal
events, and actions where the start-time and end-time collapses into a time-
period of one tick. An external event is recorded with the happened tuple 3, 6
and 11, whereas an internal event is indicated in tuple 10. An action is shown
in tuple 4.

The tuples 2 and 16 illustrate how the account is updated after the trans-
action has passed the different checks.

214 6. Means for Achieving Pragmatic Quality

Rule Manager - Tick 5

Rule Manager - Tick 1

External events: transaction(1,1002,6000,W). External events: -

Internal events: Internal events: -

Actions: Actions: verify_amount(..)
Message to agent:

Error — Available amount is..5612

z
Rule Manager - Tick 6

Rule Manager - Tick 2

External events: -

Internal events: -

Actions: verify_transaction(...)
Message to agent:

External events: new_withdrawal(4000).
Internal events: —_—

Actions: ——

Error - Invalid account number!

Rule Manager - Tick 3

External events: transaction(1,1001,6000,W).
Internal events: -
Actions: -

Rule Manager — Tick 9

i External events: -

Internal events: -
Actions: issue_account_
statement(...).

Message to agent:

Rule Manager - Tick 4

External events: -
Internal events: withdrawal_transaction(.) Name: Odd Ivar Account:1001

Actions: verify_transaction(..) Amount:4000 (-) Balance: 1612

Fig. 6.18. Execution trace of the example

Discussion. The chosen approach enables the user to validate model be-
havior based on executing the generated prototype. How well validation can
be supported depends on several factors. Here, we will discuss the validation
potential with respect to (1) the modeling language and (2) the tool support.
The first factor depends mainly on the PPP environment, whereas the last
is dependent both th PPP environment and the Rule Manager. In the sequel
we will briefly discuss these factors with respect to the current status and
devise possible improvements.

The Modeling Languages. In PPP as presented here, the internal logic of
automated processes is specified by PLD models. Another possibility is to
use DRL-rules for the process description. A translator from Tempora ERL
to Prolog has been developed, and how to include the deontic extensions of
DRL have been outlined in [207].

The UID language can be used to specify the user interface for window
applications. By exploiting UID within the frame of this work, the external
events and execution results can be related to a generated window. As such,
the execution can be presented in a way that is more like the one the user will

6.6 Support for Model Comprehension in PPP 215

The Final Temporal Database

. customer(Odd lvar,1001,0,99999)

. account(1001,5612,0,99999)

. happened(transaction(1,1002,6000,W),1,1)
. verifytransaction(1,1002,6000,W,2,2)

. invalid_transaction(1,"error",2,2)
happened(transaction(1,1001,6000,W),3,3)

. verifytransaction(1,1001,6000,W,4,4)

. withdrawal_transaction(1,1001,6000,5612,4,4
. verifyamount(1,1001,6000,W,5,5)

. withdrawal_rejection(1,"error",5,5)

. happened(new_withdrawal(4000),6,6
. ok_withdrawal(1001,4000,5612,7,7)
. withdrawamount(1001,6000,7,7)

. withdraw_result(1001,,8,8)

. new_balance(1001,,8,8)

. account(1001,1612,8,99999)

. issue_account_st...(1001,1612,9,9)
. process_transaction(1001,1612,9,9)
. account_statement(1001,1612,9,9).

1
2
3
4
5
6.
7
8
9
0

[y

Fig. 6.19. Parts of the temporal database after execution

meet in the final application. By combining this facility with the prototyp-
ing approach, multi-modal validation is enabled, showing the same situation
through several viewpoints.

Tool support. In the current version of the tools, the PPP tool and the Rule
Manager are loosely coupled. The validation is therefore carried out by re-
motely comparing the model behavior with the execution trace. By data in-
tegration [369], the tools will interpret the underlying data structure equally.
Such an integration could have interesting effects on the validation support.
First, one could envisage that the Rule Manager would be an integral part
of the PPP tool and is directly invoked from PPP, whenever an execution is
appropriate achieving control integration. Secondly, faster generation of the
executable code can be achieved by retranslating only those parts of the model
that are modified. Finally, animation of the model can be provided by directly
feeding the execution trace and the temporal database into the model. For
instance, events and actions could be shown by highlighting the actual PPM
construct. Moreover, external events can be entered in a “pop-up” window
and temporal results of the execution could be accessed by “clicking” on the
relevant PPM constructs.

By presenting the dynamics of the simulation graphically, the user may
get a deeper understanding of the behavior of the model. We envisage that all
the events in the model are presented sequentially. Moreover, active elements
are illuminated and when an item is put on a flow it will be shown on the
screen. Thus, every state change in the model will be shown.

Independently of data integration, the presentation of execution traces
and the temporal database can directly be improved by new versions of the
Rule Manager. From providing a textual user interface as described in this
section, the new versions have adopted a graphical interface under X win-
dows. Thus, a more flexible and user-friendly execution mechanisms could be
supported by upgrading the PPP tool correspondingly, obtaining presenta-
tion integration [369] of the tools.

216 6. Means for Achieving Pragmatic Quality

The current version of the Rule Manager exploits step-by-step execu-
tion and batch execution. When using step-by-step execution, as shown in
Fig. 6.18, break points are included at each tick in order to suspend the
execution. Then, the user can interactively participate in the execution by
invoking external events. Moreover, he can investigate the state of the tem-
poral database. Batch execution is realised by loading the temporal database
with initial permanent data plus the events that shall happen during the exe-
cution. It is also possible to combine these two execution types. Some parts of
the execution can be run in a step-by-step fashion and other parts in batch.

Also, the code generator provides a flexible way of specifying the “exe-
cution speed” or the tick-length. For instance, to simulate various real-time
situations, a time granularity of a tenth of a second may be appropriate,
whereas a granularity of minutes was suitable for transaction processing part
of our bank example. Finally, the execution can be triggered to run for as
many ticks as wanted.

6.6.6 Filtering in PPP

In PPP, simplifications are provided by allowing different views of a model,
each focusing on a different aspect of the system. A view is defined by a
set of explicitly defined abstraction mechanisms, manually produced by a
developer, or a combination of the two. Rather than operating on a full
model, relevant views can be applied at different stages of the development
process depending on the problem to be solved and the actors involved. In this
way, a systematical approach for suppressing irrelevant details and highlight

relevant details of a model is provided.
I pH-and-adjust
Accepted_pH
P3.2 (~ Fa.

H Check [JUnaccepted pH Eind
data pH adjustment

pH-aijuslmenl Alarm-signal & pH-adjustment

(@ (b)

Accepted_pH

- pH-check _[-
data

Fig. 6.20. (a) A model view resulting from a component abstraction (b) Ports
abstracted away and layout is improved

To illustrate the features of abstractions, two simple abstractions are de-
scribed below. More details about the abstraction-based approach are given
in [331].

Given a situation where we want to check different pH values and then
concentrate on those values which demand that adjustments are found. This
means that mainly two processes of Fig. 6.20a are of interest, namely P3.2

6.6 Support for Model Comprehension in PPP 217

and P3.4. A model view generated based on the a component abstraction.
Furthermore, the details of the ports are superfluous and only clutter the
diagram. In Fig. 6.20b, the ports are abstracted away and the diagram is
restructured to exploit the relaxed spatial requirements.

Views produced by the abstraction facility can be utilized by the expla-
nation facility. The routine

display([<element>], [<views>])

is made available to the explanation generator which specifies a total view
containing [<elements>] that is a combination of the predefined subviews
[<views>]. When the abstraction facility is invoked by this routine, a view
of the conceptual model will be displayed to the user. In this way, an expla-
nation of the relevant part of a specification can be visually shown together
with the textual explanation.

6.6.7 Execution, Tracing, and Explanation Generation in PPP

The overall architecture of the explanation component and its interconnec-
tions with other components of the PPP environment has been depicted in
Fig. 6.21, and will be introduced in the following.

Meta model

PPP model
I Tracing I

generation
component

Explanation

Explanation
request

Execution
component

component

Fig. 6.21. Architecture of the explanation generation system

Using the PPP metamodel and conceptual models written in the PPP
language, the execution component transforms these models to an executable
representation. The resulting code is then executed, exposing the users to the
dynamics of the conceptual model. During execution, the users simulate the
system environment, giving inputs and receiving outputs as requested and
produced by the executing model.

In such a session, users have the opportunity to interrupt the execution,
and issue a request for explanation of the observed behavior. These requests
are then interpreted by an explanation generation component, which responds
by generating an appropriate explanation. The generation is performed in two
subphases, first one which determines the content and structure of the ex-
planation, and then a phase which produces suitable presentations for user

218 6. Means for Achieving Pragmatic Quality

communication. The content of the explanation is found by selecting informa-
tion from different sources. First, the metamodel and the conceptual model
are both used. Second, the selected content may be influenced by the char-
acteristics of the users interacting with PPP, and by the context for the
explanation request. It is then possible to tailor the explanation to the re-
ceiver, for instance to provide different explanations to end-users and system
developers. Additionally, the explanation must refer to the events which ac-
tually happened during execution of the conceptual model. This information
is provided by a tracing component. It records occurring events as reported by
the execution component, according to a predefined trace schema. The inter-
face to the explanation generation component consists of a set, of trace query
functions, which provide views into the recorded trace, tailored to commonly
occurring explanation requests.

Drawing upon these different sources of information, the explanation gen-
erator constructs an explanation represented in an explanation modeling lan-
guage. The resulting explanation may subsequently be translated to a mul-
timedia presentation, suitable for user communication.

Model Tracing. The tracing component as shown in Fig. 6.21 is divided
into two subcomponents; a reported events handler which interfaces the ex-
ecution component and stores information about reported events according
to a predefined schema, and a query handler which offers the explanation
generation component high level queries tailored to commonly occurring ex-
planation requests.

Reporting Occurring Events from the Executing Model. In order to provide
comprehensive explanations of observed behavior from an executing concep-
tual model, tracing techniques have to be employed. The question is what
kind of information has to be recorded. To answer this question, and hence
provide a schema for trace representation, we have taken a general view of
the statics and dynamics of information systems.

We consider a model to pass through a sequence of states during execu-
tion. A state is the aggregated value of all state components in the model.
In PPP these components are flows, stores, and local variables of PLD’s.
Additionally, states are associated with a state number, or a time point, giv-
ing their temporal ordering. Various types of events may bring the model
from state to state during execution. For instance, a model can change state
through interaction with its environment. Such events correspond to input
flows from external agents. After such an event, the executing model responds
with applying a series of transformations, or dynamic rules. In the course of
these applications, the model passes through a series of states until a new
equilibrium is reached. It is information about environment interaction and
application of dynamic rules that have to be recorded in a trace.

Conceptually, a trace can be considered a directed graph, where the nodes
correspond to states, and the edges correspond to events of different kinds,
i.e. interaction with the environment, and application of dynamic rules. We

6.6 Support for Model Comprehension in PPP 219

have defined a trace schema based on the various events which may occur.
Since this schema is derived from the edges in the trace graph, information
about the nodes (i.e. the states) is only implicitly represented. Common to
all events is that their temporal ordering is kept by storing a reference to the
’head’ state and the ’tail’ state of their edge in the trace graph. The events
must be uniquely identifiable by name or other means of direct identification.
Additionally, changes made to the state are recorded for all events which
affect the state directly. A change is represented by a reference to a state
component and its new value.

Now, we can present the most important parts of the schema informally
as follows:

External events correspond to triggering input flows from external agents to
processes. Such events may occur spontaneously, and are not under the
control of the executing model. Information stored about such events are
a unique reference and effects on state components.

Other inputs, i.e. non-triggering input flows from external agents are recorded
similarly, except that they may have an associated precondition. A pre-
conditon refers to state components and their values, so a list of the
components and values referenced has to be included.

Complex dynamic rules (transformations) are recorded with reference and
precondition values. In PPP, these correspond to processes on all levels
of decomposition, and to the PLD constructs ’selection’, ’alternative’,
and ’loop’, i.e. those which initiate construct blocks in a PLD. A typical
precondition in PPM would be “a triggering flow is received”, and a block
in PLD initiated with an alternative construct would have a precondition
corresponding to the expression in the construct. Note that complex rules
change state only indirectly, through application of sub-rules, so their
effects on the state are given implicitly through these sub-rules.

Simple dynamic rules update one or more state components directly in an
atomic operation. Assignments, sendings and receivals of data in PLD
are considered simple dynamic rules. Information about the changes they
cause on state components are included in the trace. Also, values of state
components referenced in preconditions, or referenced as new values of
state components are computed, are included as well.

Having defined a trace representation, we have to provide mechanisms for
storing information from the executing models. In order to do this, the model
has to be instrumented with probes at the appropriate locations. These probes
are calls to procedures which record information about occurring events in
the trace. The reported events handler offers reporting procedures to be called
from executing models. The reported events must comply with the schema
presented above, but the amount and type of information to be recorded
depend on the needs for different kinds of explanations. The procedures cor-
respond to the various events identified above, hence we have for instance a

220 6. Means for Achieving Pragmatic Quality

reporting procedure reportexternal which takes two arguments, a reference
to an external event, and the direct effect on state components. The state
numbers needed are inserted before storing the information in the trace. For
events ranging over multiple states, it is possible to report their initiation
and termination separately.

Parts of the generated Ada code Some possible annotation points
for probes in the generated code
TASK BODY p1_21S

account_id:INTEGER;
account_balance,amount,new_amount:MONEY;

name:STRING;

date:DATE; . "

BEGIN Complex dynamic law corresponding to

task_cycle: LOOP process P1.2
SELECT
ACCEPT Withdrawal_transaction(varl:INTEGER;

var2:MONEY;
var3:STRING;
var4:MONEY;

var5:DATE) DO
account_id:=varl;
account_balance:=var2; . . .
name:=var3: Simple dynamic law: update of local variables
amount:=var4;
date:=var5;
END Customer_account;
R

ACCEPT shut_down;
EXIT task_cycle;

END SELECT;

IF account_balance>amount THEN
p1_3.0k_withdrawal(account_id,account_balance;name,amount,date);

ELSE N Complex dynamic law: precondition includes
PUT("Flow to agent: Withdrawal_rejection ->"); values for balance and amount
PUT("Error - Available amount is:"); . X X
PUT(account_balance); T - Simple dynamic law: sending of flow
PUT("Flow from agent: New_withdrawal<-");
GET(new_amount); Input: precondition 'true’, receival of flow and
IF new_amount<=account_balance AND new_amount>0 THEN update of local variable
pl_3.0k_withdrawal(account_id,account_balance,name,new_amount,date);
ELSE Complex dynamic law: precondition refers
PUT(account_id,account_balance,name,amount,new_amount,date); newamount and balance
END IF;
END IF;
END LOOP task_cycle;
EXCEPTION
WHEN TASKING_ERROR => TERMINATE;
END p1_2; Termination of complex dynamic law

Fig. 6.22. Generated Ada code from a PLD indicating the insertion of probes

Figure 6.22 indicates how probes may be inserted by the Ada code gener-
ator. Figure 6.23 shows a small portion of a trace graph corresponding to an
execution of process P1.2: Verify amount, where the requested amount to
be withdrawn exceeds the balance of the account. The customer is then asked
for a new amount, but responds by aborting the transaction. The nodes rep-
resent states with a state number, and the edges represent the events from the
execution. The figure also shows the representation of some selected portions
of the trace, corresponding to the probes in Fig. 6.22. The order of the ele-
ments in the tuples is: Reference, values of state components in precondition,
from-state, to-state, and state change. The hierarchical structure of dynamic
rules derived from the PLD is shown as well, to illustrate the relationships
to the trace graph.

6.6 Support for Model Comprehension in PPP 221

P1.2
pI{ \de
pld3 plds
pld4 pld6 pI|d7}d8
pld9 pld11

pld10 pld12

internalsimple(pld1,[(Withdrawal_transaction,(jon,100,121292,80,1234))],S1,S2,
[(name,jon),(amount,100),(date,121292),(account_balance,80),(account_id,1234)])

internalcomplex(pld5,[(account_balance,80),(amount,100)],S2,S5)
internalsimple(pldé,[(account_balance,80)],S2,S3,[(Withdrawal_rejection,("Error - Available amount is:",80)])
inputevent(pld7,[(New_withdrawal,0)],S3,S4,[(new_amount,0)])
internalcomplex(pld11,[(new_amount,0),(account_balance,80)],S4,S5)

Fig. 6.23. A small portion of a trace graph for execution of the PLD of P1.2

Retrieving Trace Information for Explanation Support. We have defined a set
of trace views which provide necessary retrieval mechanisms for explanation
generation support. The views are tailored to explanation strategies for com-
monly occurring explanation requests. Each view is associated with a query
which can be made to a query handler. The queries can be nested, providing
combinations of views. The views defined so far are as follows:

In the State component view, the focus is on changes made to a spec-
ified state component. Information about the state change is retrieved as
it is stored in the trace. The query specifies the component and other con-
ditions to be satisfied for the change to be retrieved. For instance, to find
the last sending of the flow Withdrawal rejection the query FIND LAST
CHANGE FOR Withdrawal_rejection® can be issued. The retrieved information
could be the third tuple extracted from the trace shown in Fig. 6.23. Further
conditions can also be specified, for instance conditions on the values of the
changed state components.

The External event view is used to trace the interaction with the en-
vironment. A query can be made to retrieve information about specified ex-
ternal events and the changes made to state components as a result of these.

3 The syntax presented should not be taken too literally. The interface to the
explanation generator is a set of function calls corresponding to each query.

222 6. Means for Achieving Pragmatic Quality

In the Rule application view focus is on a particular dynamic rule, and
information about applications of this rule can be retrieved. For instance,
FIND ALL APPLICATIONS OF P1.2 would retrieve information about execu-
tions of this process for a specified period of execution.

The Rule context view provides the context of a rule, which includes
the set of super-rules executing at the same time. Referring to Fig. 6.23, the
context of pld6 is pld5, pld2, and P1.2. A nested query must be made
to specify a particular application. So, the query FIND SUPER OF (FIND
LAST APPLICATION OF pld6) can be used to retrieve information about the
PLD block initiated with the alternative construct pld5 (“Amount is less
or equal to account_balance”), and hence support explanation of why the
flow Withdrawal rejection was sent. An alternative query to retrieve the
same information would be FIND SUPER OF (FIND LAST CHANGE FOR
Withdrawal_rejection).

The Refers-to view tracks the dependencies between dynamic rules. For
instance, if a precondition refers to state components changed by other dy-
namic rules, the rule refers to those rules. In Fig. 6.23, we can see that the
sending of Withdrawal rejection depends on the value of account_balance,
changed by the receival of Withdrawal transaction. Thus, the query FIND
REFERS (FIND LAST CHANGE FOR Withdrawal_rejection) will retrieve infor-
mation about the receival of the flow (pld1l), i.e. the first tuple extracted
from the trace in Fig. 6.23.

From the State view it is possible to derive information about states from
the trace, for instance which rules terminated, which were applied, values of
state components etc.

Combinations of views are also possible. We have already indicated
how nested queries can be made to combine views. Using the query from the
refers-to view above, we can form another query to retrieve information about
all changes made to the referred state component (Withdrawal rejection)
in a specified period of execution: FIND ALL APPLICATIONS OF (FIND
REFERS (FIND LAST CHANGE FOR Withdrawal_rejection)).

In addition, we provide the possibility to specify the interval of interest
for the validation session. This can be done by calling to procedures which set
the start and end of the interesting interval, respectively. The end points are
specified by characterizing the states uniquely. For instance, the specification
FROM (FIND LAST STATE WHERE EXTERNAL EVENT) sets the start of
the interval to the last state where an external event took place.

The interface to the explanation component is made up of a set of query
functions corresponding to each of the views above. Together they provide
retrieval mechanisms which can be used to support explanation generation.

Explaining the Execution of Conceptual Models. For our purposes,
we have seen it advisable to divide the process of explanation generation into
two consecutive subprocesses, deep generation and surface generation.

6.6 Support for Model Comprehension in PPP 223

In the PPP CASE environment, a deep explanation generation component
has been implemented. It is meant to support the whole process of conceptual
modeling, starting from the learning of a modeling language to the validation
of the resulting conceptual model. More specifically, the following four areas
are to be supported:

Language help facilities Using a simple meta model of the PPP language,
the component can explain how constructs are used syntactically and
also indicate some of their semantic aspects. Taking a process in PPM
as an example, we can generate explanations to questions like “What is
a process?” and “How are processes used?”

Syntax checking Although not a part of the syntax checking module, the
explanation generation component provides an interface to the module’s
messages. Running a verification check on an illegal PPM model, for
example, the system could generate the message “The diagram is illegal,
since P3 does not produce any flow. A process must produce at least one
flow.”

Model inspection Properties of the conceptual model have been paraphrased
and explained in several CASE-related systems (see [77, 316, 358]). Due
to the formality of many modeling languages and the size of the corre-
sponding conceptual models, explanations have been deemed useful for
people not familiar with reading conceptual models. The model inspec-
tion technique serves as a validation technique, and in our component we
can tailor the explanations to different user groups, depending on their
knowledge and preferences. “What is process P1.2 Verify_amount do-
ing?”, for example, could spark the generation of explanations at several
levels of abstraction, using different foci and different terminology.

Model execution When executing PPP models, we can help the users under-
stand the execution by providing history explanations and input justifica-
tions. A history explanation exposes the internal behavior of the model
and is generated to let the user validate the reasoning leading to the
current results. As will soon be shown, the question “Why was my with-
drawal rejected?” (referring to flow Withdrawal rejection from process
P1.2) is a request for a history explanation.

An input justification explains why the model needs certain inputs from
the user. They are generated as responses to questions like “Why do you
need New_withdrawal?” or “What is New_withdrawal used for?”

In the following, we will discuss the principles of our deep generator with
respect to execution-related explanations. In our approach, then, we draw
on the results from expert systems, but we have been forced to modify their
explanation strategies to cope with the increased complexities of conceptual
models.

Deep Generation in the PPP Environment. The deep generation component
includes various sources of knowledge and a number of strategies for selecting
and structuring elements from the sources to form deep explanations.

224 6. Means for Achieving Pragmatic Quality

The content of the deep explanation is taken from the meta model defining
the PPP language, the PPP conceptual model, and the trace from executing
the PPP model. These three representations together are referred to as the
source model. An additional user model and a context specification are used
to govern the generation process, but in the presentation to follow we will
ignore this tailoring of deep explanations to user and context. All the relevant
informations are represented using an explanation modeling language called
EML, which is based on the attribute-value structures found in many natural
language grammars [76]. An EML structure, then, contains two parts « : 3,
where « is a characterization predicate and 3 an attribute-value structure.
The characterization is a classification of the information contained in the
structure, whereas the attribute-value structure specifies everything from the
user’s knowledge of it to its linguistic realization. In this presentation, we
will ignore the use of these attribute-value structures and rather focus on
the way characterizations make it possible to generate deep explanations. In
Table 6.1, we have shown the EML characterizations of some of the elements
from our PPP model. In the characterization s(purpose(p1.2)), for exam-
ple, s says that this is structural information (as opposed to c for constraint
informations), and purpose is a generic relationship with argument p1.2.

Table 6.1. EML characterizations for some elements of the PPP conceptual model

EML characterization PPP model informations
s(data_flow(withdrawal rejection)) declaration of flow withdrawal rejection
s (generate (pld6,withdrawal_rejection)) pld6 generates withdrawal_rejection

s (purpose(pl.2)) P1.2’s purpose is to verify amount

For each source model phenomenon to explain, a specific explanation
strategy has been formulated. This strategy determines which elements to
include in the explanation, and how these elements should be structured.
Interestingly, it has turned out to be possible to define strategies in terms
of substrategies and relate their definitions to general theories of text lin-
guistics. In our system we have implemented the strategies for explanation
generation as plan operators, which are specializations of the relations in
Mann and Thompson’s general Rhetorical Structure Theory [252]. By using
one of these operators, an explanation request, or a discourse goal in gen-
eral, is decomposed into a number of subgoals or references to the source
model. The structures of some of these plan operators, which are also repre-
sented in EML, are given in Table 6.2. In the first of them, cause(Value) is
a characterization predicate that refers to that particular plan operator. Cat
is a category, whereas head is the discourse goal fulfilled by using the oper-
ator. Nucleus and satellite are subgoals of head in the sense that head
makes explicit the relationship between them and is fulfilled by fulfilling the
subgoals. The subgoals themselves are either characterizations of other op-
erators or characterizations of source model elements. A subgoal may be a

6.6 Support for Model Comprehension in PPP 225

simple characterization (like the nucleus of cause), a choice between charac-
terizations (like the satellite of instantiation), or a list of characterizations
(like the nucleus of behavior). If a list of characterizations is specified, the
system tries to include in the explanation as many as possible of the list
elements. At last, precondition includes a number of predicates, either re-
ferring to source model elements or forming rules analyzing the source model,
and these bind the variables of the operator and constrain the use of it.

To generate a deep explanation, an appropriate discourse goal is picked

and the corresponding plan operator decomposed into its subgoals. Using a
standard unification-like planning algorithm, the generator expands the sub-
goals until all unexpanded subgoals refer to elements of the source model. The
precondition part of the operators, and also the user model and the context
specification, determine which operators to use in this planning process. In
the resulting deep explanation, the leaf nodes are content elements that can
be transformed to predications in Dik’s Functional Grammar. In recent years
there have been several promising attempts to produce natural language sen-
tences from these predications, and the surface generator to be added will
draw on these experiences.
Generating a History Ezplanation. Consider the trace in Fig. 6.23. The cus-
tomer tries to make a withdrawal of 100, but the balance of her account is
only 80. Receiving an error message from the system, she might request a
history explanation as shown below.

system: Error — Available amount is 80.
user: Why was my withdrawal rejected?

Ignoring the use of features to specify linguistic informations, user prop-
erties and explanation contexts, we can explain the generation of deep expla-
nations as a general top-down planning process. Before generating the deep
explanation, however, we need to establish the interface between goals in plan
operators and informations in recorded trace tuples. Basically, this is done by
defining functions in the explanation generation component that correspond
to subsets of returned tuples from trace queries. When one of these functions
are called, its parameters are translated to forms suitable for trace queries, a
specific query is performed, and parts of the query result are translated back
to the EML formalism. In Fig. 6.24, we have indicated how three of the com-
ponent’s functions are related to queries from the tracing component. The
function get_last returns an EML identifier for the last generated instance
of a model element. Function get_beh returns the model statement instance
responsible for the generation of a specified instance value, and pre_inst
returns the instances last used as preconditions for the given model element.

To generate a text that explains the sending of flow Withdrawal rejection
we choose to invoke the cause operator. This operator is used to justify a given
value by describing the way model elements are used to generate or calculate
that particular value. Prior to the invocation of the operator, though, the
operator’s input parameter Inst is computed from the formula

226 6. Means for Achieving Pragmatic Quality

Table 6.2. Plan operators needed to generate the history deep explanation.

TYPE operator 7
HEAD cause
NUCLEUS s(generate(C,Inst))
cause(Inst) : | SATELLITE instantiation(Model)
find_arg(agens,Inst,Inst_ag)
PRECONDITION type(Inst_ag,Ag)
find last_pre(Ag,Model) J
TYPE operator |
HEAD instantiation
instantiation(Model) : [NUCLEUS behavior(Model)
SATELLITE < s(pre_inst(Inst_set)) >
cause(pre_inst(Inst_set))
TYPE operator
HEAD behavior W
s(trigger([-,Model]))
behavior(Model) : s(is_precondition_for([_,Model]))
NUCLEUS s(receive([Model,_]))
s(terminate([_,Model]) J
s(generate([Model,_]))

Table 6.3. Additional operators for generating the input justification.

TYPE operator
HEAD current_acitivity
o NUCLEUS future_use(Inst)
current._activity(Inst) : | gareLLiTE super_activity (Activity,_)
PRECONDITION s(Element ([Inst]))
’ s(decomposition([Activity,Element]))
TYPE operator
HEAD super_activity
super_activity (Activity,Super) : | NUCLEUS s(purpose(Activity,-))
o ITE s(decomposmlop([Super,Act1v1ty]))
s(purpose([Activity,]))
TYPE operator
HEAD future_use
NUCLEUS cause(Inst)
futureuse(Inst) : | garpLLiTE behavior(Next)

s(Element([Inst]))

PRECONDITION { s(trigger([Element " termination,Next]))

6.6 Support for Model Comprehension in PPP 227

Functions used in EML : Translation Trace queries
between
formalisms

withdrawal_rejection N
iloé withdrawal_rejection - FIND LAST CHANGE FOR
.~ withdrawal_rejection
i10@withdrawal_rejection /
generate(ie@pIdG,i10@withdrawal_rejection) - el
pld5
[i7@account_palance,i8@amount] - g"’;”glé-gs-r APPLICATION

Fig. 6.24. Functions defined to request informations from the trace

Inst = get_beh(get_last(withdrawal rejection)) =
generate (i60pld6,i10Q@withdrawal rejection).

In the expression above, i6@pld6 is the identifier of the last execution
of statement pldé (see Fig. 6.23) and i10@withdrawal rejection the iden-
tifier of the generated flow. Cause’s precondition is now evaluated to find
variable bindings that make all its predicates true. In this particular oper-
ator, all predicates are rules working on the source model, and the first of
them returns the agens parameter of relation Inst (semantic roles like agens
are defined in the conceptual model). The next one determines the type of
this agens instance, and the third and last one checks the model to find the
last model element used prior to the flow generation statement that has a
precondition associated with it. All the predicates in the precondition were
found to be satisfiable here. After a successful binding of variables used in
precondition, the operator’s nucleus and satellite are instantiated, and
we get the instantiated cause operator structure in Table 6.4.

Table 6.4. Instantiated cause operator.

TYPE operator
HEAD cause
NUCLEUS s(generate(16@pld6,i10Q@withdrawal_rejection))
SATELLITE instantiation(pld5)

find_arg(agens,generate(16@Qpld6,i10@Qwithdrawal_rejection),i6@pld6)
PRECONDITION type(i6@pld6,pld6)

find last_pre(pld6,pld5)

In the instantiated operator, the precondition has found that i6@pld6 is
the agens of Inst and pld6 the type of 16@pld6, and that pld5 has the pre-
condition governing the execution of PLD construct p1d6. The instantiated
nucleus is a source model reference that is to be realized as a natural language
clause. The satellite, however, refers to the instantiation plan operator, and

228 6. Means for Achieving Pragmatic Quality

the generation process proceeds by instantiating and including this operator
into the structure.

The instantiation operator does not have any precondition. Its nucleus
is instantiated with the value behavior(pld5), and since there are two al-
ternative satellite values, the system just picks the first one and instantiates
it. If it later turns out that it is impossible to instantiate the satellite, or
perhaps impossible to decompose or realize it, the system backtracks and
tries the other alternative. Instantiating the satellite, the generator calls the
function pre_inst to request a set of instances from the trace. The resulting
satellite is s ([i17@account_balance,i8@amount]), which is a simplification
of the two source model references s(structure([i7@account balance]))
and
s(structure([i8@amount])).

Instantiation’s nucleus is expanded using the behavior operator, which
contains neither a precondition nor a satellite. The nucleus is a list of source
model references, and the system tries to instantiate and include as many as
possible of these informations. Since pld5 is an alternative construct, only
the reference

is_precondtion for(’account balance < amount’,pld5)

is found in the PPP model, and we get the final deep explanation struc-
ture as shown in Fig. 6.25. All the leaf nodes of the structure are content
elements that are supposed to be mapped into natural language in the sur-
face generator.

cause(generate(i6@pld6,il0@withdrawal_rejection))
NS
s(generate(i6@pld6,i10@withdrawal_rejection))
instantiation(pld5,generate(i6@pld6,iL0@withdrawal_rejection))
e T
behavior(pld5) s([i7@account_balance,i8@amount])

n

s(is_precondition_for(['account_balance<amount’,pld5]))

"Withdrawal_rejection was generated"” i
"Account_balance is less than Withdrawal_transactions’s amount"
"Account_balance was 80 and Amount 100"

Fig. 6.25. Deep explanation for the question “Why was my withdrawal rejected?”

It should be noted, however, that the deep explanation in Fig. 6.25 is
not shown in all its complexities. Instead of the characterizations used as

6.6 Support for Model Comprehension in PPP 229

leaf nodes in the explanation structure, there should be full attribute-value
structures that specify the linguistic realization of the content elements. If
this full deep explanation were sent to a surface generator, we could get the
realization below.

system: Amount rejection was generated because account_balance is less than
withdrawal_transaction’s amount. Account_balance was 80 and Amount 100.

In this text, the word “because” corresponds to the plan operator cause,
and the content elements (i.e. the leaf nodes) are realized as clauses in natural
language.

Generating an Input Justification. Since the customer’s original withdrawal
was rejected, the system will request a smaller amount to be withdrawn. This
corresponds to flow New_withdrawal and receive construct p1d7 in Fig. 6.23.

user: Why do you need New_withdrawal?

system: I'm verifying the amount as part of the processing of transactions.
New_withdrawal was requested because account_balance was less than
withdrawal transaction’samount.Account_balance was 80 and amount 100.
If New_amount < account_balance and New_amount > 0, then Ok_withdrawal
is generated. If New_amount > account_balance or New_amount < 0, then
Aborted withdrawal is generated.

In this case, the planning was a bit more complicated, and all the operators
in Fig. 6.2 and Table 6.3 were needed. The operator structure of the generated
deep explanation is given in Fig. 6.26, together with the linguistic realization
of the isolated content elements. When coordinating the elements to form the
final explanation above, though, the surface generator may have to modify
these proposed grammatical and lexical realizations.

Related Work. Combining executable modeling languages, tracing mecha-
nisms, and explanation generation techniques yields a novel approach to com-
prehension in CASE environments. There are no extant environments offering
this combined approach to model validation, although the same techniques
in isolation have been experimented with in many kinds of environments.

The idea of using executable specifications for validation purposes has
been known for several years, but is not widely used in current practice.
Our explanation component builds on many of the same basic principles for
model transformation and execution as found in other environements. Some
of these also provide advanced control of the execution, such as step-by-
step execution, breakpoints, and display of active elements and events either
graphically or textually, e.g. [L64] and [241]. Although database approaches to
tracing are difficult to find in environments for conceptual modelling, many of
the principles employed in our tracing component are similar to those found
in some programming environments.

230 6. Means for Achieving Pragmatic Quality

current_activity
\
n super_acitivity

S

future_use purpose purpose

n n

cause Q H I
AN
A instantiation behavior behavior
precondition C precondition generate precondition generate
n n n n n
B D E F G

possible realizations of content elements

"New_withdrawal was requested”

"Account_balance was less than withdrawal transaction’s amount"
"Account_balance was 80 and withdrawal transactions’s amount was 100"
"New_amount <= account_balance and new_amount > 0"

"Sending of Ok_withdrawal is generated"

"New_amount > account_balance or new_amount < 0"

"Sending of Aborted_withdrawal is generated"

"I'm verifying the amount"

"I'm processing transactions”

o
—IGTMUO®> g

Fig. 6.26. Operator sturcture of deep explanation for the question “Why do you
need New_amount ¢”

In Snodgrass’ software monitoring system [347], traces are stored as tem-
poral relations for recording dynamic information like call sequences. A tem-
poral query language TQuel can then be used to retrieve the recorded in-
formation. In LeDoux’s YODA system [226], the execution history of con-
current Ada programs is viewed as a stream of events. Recorded events are
those deemed useful for program debugging, and include information about
executing tasks and reads and updates of selected (simple) variables. A query
processor interpretes queries written in PROLOG, which can have some tem-
poral operators included.

Whereas Snodgrass’ software monitor does not trace static objects, the
changes made to state components is a primary concern for our purposes.
Additionally, our general trace schema includes justifications of occurring
events. The YODA system is solely focusing on debugging of Ada programs,
whereas our schema provide more general representations which can be used
for different languages, as exemplified by PPM and PLD. Our query language

6.6 Support for Model Comprehension in PPP 231

does not provide the same temporal expressiveness , however it provides
high level queries tailored for the purpose of explanation of model behaviour.
Also, as noted above, our tracing component makes use of model knowledge,
for instance knowledge about hierarchical relationships among processes and
among PLD constructs.

CASE environments with extensive facilities for explaining the execution
of conceptual models are not available today. A component resembling our
explanation component, though, is included in the Gist environment [359].
Gist is an executable textual representation language, and having symboli-
cally executed a Gist model, the system can translate the recorded trace into
natural language. But this component is a pure paraphraser — there is no
user-tailoring or context-tailoring — and the paraphrase’s focus and struc-
ture is fixed since the user cannot ask specific questions to the generation
component.

In Kalita’s system [198], which is a report system, a component for report-
ing on the status of executing models is used. The model itself is represented
as a hierarchical Petri net with rules governing the transitions between states.
As opposed to the paraphraser in Gist, Kalita’s paraphraser can be activated
throughout the whole execution of the model. However, it is not possible to
vary the generated text according to user, context, or question in his system,
either.

In the field of expert systems, though, we can find some explanation gen-
eration components resting on the same general approach as ours (for exam-
ple XPLAIN [360] and EES [295]). The two explanations generated above
correspond to their “why” and “how” questions, and in EES there are plan
operators building up the same kind of explanation structures as we do. Still,
in these systems the source models include rule bases that are considerably
simpler conceptually than our executable models, and these rule represen-
tations are inherently very close to the desired explanation structures. So,
even though their approaches have given rise to impressive results in expert
systems, the explanation generation components are not directly applicable
in the domain of conceptual modeling,.

6.6.8 Advantages of the Integrated Approach

The comprehesion techniques supported by PPP can be used independently
of each other. For instance, we often see model execution used as a stand-
alone technique. We assume that an integrated approach as presented above
increase the potential of validating conceptual models. We have particularly
focused on the combination of model execution and explanation. This com-
bination gives better means to understand the relationships between a con-
ceptual model and its behavior as observed during execution. A user can
normally only observe the outputs given when a model is executed, and give
inputs as requested. By combining execution with explanation, the user can
get a rationale both for requested inputs and computed outputs. This can

232 6. Means for Achieving Pragmatic Quality

also have positive consequences for later projects, since it increases the users
understanding of the modeling language.

Complexity reducing techniques suppress details as necessary for better
communication with users. This technique can be exploited by explanation
generation, and make it possible to provide multimedia explanations.

The explanation generator glues together the techniques to form one com-
prehensive technique. Explanation strategies encode knowledge of how to ex-
plain events occurring during model executions, and the final explanation
includes references to both the conceptual model and the actual execution.
The result is a multimedia explanation which enhances user communication
and provides useful feedback to the modeling process. We will return to the
practical use of the techniques in the last chapter of the book.

6.7 Chapter Summary

Pragmatic quality is the correspondence between the externalized model and
the audience’s interpretation of it. The framework contains one pragmatic
goal, namely comprehension. For a large model, it is unrealistic to assume
that each audience member will be able to comprehend all the statements
in the model which are relevant to them. Thus, comprehension as defined
above is an ideal goal, just like validity and completeness, and can often
not be achieved. From the technical actors’ point of view, that a model is
understood means that all statements that are relevant to the technical actor
to be able to perform code generation, simulation, etc. are comprehended by
this actor.

We have in this chapter presented several activities to achieve pragmatic
quality in more detail:

— Transformations: Generally to transform a model into another model in
the same language. We have here focused in particular on filtering, con-
centrating on and illuminating specific parts of a model.

— Translation: A translation can generally be described as a mapping from
a model in one language to a model containing all or some of the same
statements in another language. The main uses of translation mechanisms
presented in detail in this chapter are:

— Model execution and prototyping to be able to check the dynamic be-
havior of the model.

— Explanation generation to answer questions about a model and its be-
havior.

7. Means for Achieving Social Quality

We have increased the font size in Fig. 7.1 of the relationship of the quality
framework that is looked into in this chapter.

The main goal defined for social quality is agreement. In Chap. 3 six kinds
of agreement was identified.

— Relative agreement in interpretation: all I; are consistent,
— Absolute agreement in interpretation: all I; are equal,

— Relative agreement in knowledge: all K; are consistent,

— Absolute agreement in knowledge: all K; are equal,

— Relative agreement in model: all M; are consistent,

— Absolute agreement in model: all M; are equal,

Relative agreement means that the various projections or models are con-
sistent. Absolute agreement, on the other hand, means that all projections
are the same.

Tool support in this respect is most easy to device on achieving agree-
ment in models created based on the internal reality of the stakeholders that
are to agree. One can also support the specific process of achieving feasible
agreement. Based on this, main activities for achieving feasible agreement
are model integration with specific emphasis on conflict resolution in the
integrated models.

7.1 Tool support for model integration

The general process has many similarities with view integration, which has
been a topic of much research in the database community. The process can
be considered as consisting of four subprocesses [123].

— Pre-integration: When more than two models are used as input to the
process, one must decide on how many models should be considered at a
time. A number of strategies have been developed such as [105]: binary
ladder integration, N-ary integration, balanced binary strategy, and mixed
strategies.

— Viewpoint comparison: Includes identifying correspondences and detecting
conflicts among the viewpoints. Some types of conflict that may be detected
are [105]:

234 7. Means for Achieving Social Quality
. Social
Participant Perceived
- actor
knowledge semantic) .
K quality Interpreltatlon
Physical Pragmatic
uality Empirical quality
quality
. Semantic Syntactic
Modelmg quality Mor_jel . quality Langua}ge
domain externalization extension
D M L
Pragmatic
quality
Technical

actor
interpretation
T

Fig. 7.1. Coverage of this chapter

— Naming conflicts: Problems based on the use of synonyms and homonyms.

— Type conflicts: That the same statements are represented by different
symbols in different models.

— Value conflicts: An attribute has different domains in two models .

— Constraint conflicts: Two models represent different constraints on the
same phenomena.

— Viewpoint conforming: Aims at solving the previously detected conflicts.
Representations of statements in two different models can be classified as
follows [123]: Identical, equivalent, compatible, and inconsistent. To deal
with such conflicts traditional approaches are mostly based on either trans-
formational equivalence or they entrust the skill of the participants by pro-
viding only examples valid for the particular model. According to [123] few
approaches deal with inconsistent statements. A notable exception is Leite
and Freeman [229]. They describes a way of dealing with conflicting rules
in the modeling process. Rules are described in the rule-language VPWI
where both data, actor, and process perspectives can be represented. A
view consist of a set of rules. Mechanisms are provided to compare two dif-
ferent views of a given situation in order to identify, classify, and evaluate

7.1 Tool support for model integration 235

discrepancies between the views, and integrate the solution into a single
representation as illustrated in Fig. 7.2. A general strategy for viewpoint
analysis is shown in Fig. 7.3. Here A and B, both system analysts, per-
form a modeling task. They both use the VPWI language to express their
perception of the universe of discourse. They use different perspectives
(process, data, and actor) and different abstraction mechanisms (general-
ization, aggregation) to improve their own view. Once a series of critiques
are provided, each analyst alone solves the internal conflict and integrates
their final perception into a view. After that, both views are compared and
analyzed.

Model of
identity
Viewpoint a

IDENTIFY Typology of
differences

Viewpoint b

Mapping of
solutions
to viewpoints

Discrepancies

FACT VALIDATION

Negotiation
process

INTEGRATE

ypes of
discrepancies

Alternative

COMMUNICATION solutions

Reconciled
solution

Fig. 7.2. Viewpoint resolution

Other useful techniques in this respect is the use of argumentation sys-
tems [70, 157] for supporting the argumentation process. These uses the
IBIS !-approach proposed by Rittel [314] or extensions of this. IBIS focuses
on the articulation of the key issues in the problem area. Each issue may
have many positions, which are statements or assertions which resolve the
issue. Each of the issue’s positions in turn may have one or more arguments
which either support or object to the position. Going from one node-type
to another is done through so-called rhetorical moves. A more detailed
overview of the types of such moves between nodes is given in Fig. 7.4,
taken from [70]. E.g. an issue can be a generalization or a specialization of
another issue, question an issue, a position or an argument, replace or be
suggested by another issue or be suggested by a position.
Later work e.g.[60, 311] have extended this model. We will return with an
example of the use of this in the end of this chapter.

— Merging and restructuring: The different models are merged into a joint
model and then restructured. The latter involves checking the resulting
model against criteria for semantic, pragmatic, and social quality.

Generally, it is not to be expected that matching apart from syntactic
matching can be performed totally automatic. Model merging can be sup-
ported in several ways, having computerized support for manual integration,
possibly with the use of CSCW-techniques.

! Issue Based Information Systems

236 7. Means for Achieving Social Quality

A using %
I

yk

Data | Actor |

Universe
of Discourse

el % B using
VWPI

\

UoD |

Data
perspective

Actor
perspective

hierarchies |

Analysis Analysis
of perspective of perspective

Set of Set of
Critique Critique

|

Individual Individual
integration integration
View A View B Construction
of

views
\ =
Analysis
of views Analysis
of
/ \ views
Missing Wrong
facts facts

Fig. 7.3. Strategy for viewpoint analysis

]\

— Computerized support of manual integration: Manual merging may be sup-

ported in various ways by exploiting modern user-interface technology.
Working styles such as virtual paper, clipboards, cut and paste, and active
structures can be supported.
It can be useful to provide facilities to track the transformations performed
on a predecessor model, i.e. recording modeling history during updating
and filtering. The changes can be recorded textually, or shown explicitly
relative to the diagrams of the predecessor model by using special notation
in the diagram. In the latter case, cut and paste facilities across windows
between models, greatly improve the merging process.

— Automatic integration support: The result of automatic merges are useful
only in some cases e.g. if all components of the different models have got
unique identifiers. However, the use of formal modeling techniques opens
up for more extensive integration techniques where for example structural
conflicts may be resolved. This is useful in most modeling situations where
different participants may have different perceptions on the area and a

7.1 Tool support for model integration 237

) Replaces

Generalises Questions

Specializes I Is—suggested-by
ssue

Responds-to

Questions
Questipns Is suggested by

Is suggested by
Generalises
Specilises
Argument

Generalises
Specializes

Position ‘\S‘#’E’rrts/
Objects-to

Fig. 7.4. Relationships in IBIS

possible CIS-implementation to address the perceived problems. To address

such conflicts, a number of conflict resolution techniques are proposed, see

e.g. [188, 353].

— CSCW support: CSCW techniques can be applied to create new arenas for
dialogue. In addition to face-to-face meetings, the integration effort can
take place by applying more advanced workstation and networking tech-
nology in cooperative sessions. The negotiation session may be synchronous
or asynchronous [103].

— Synchronous negotiations: In the synchronous case all candidate models
are available to all involved participants in the session through a shared
workspace for comments and comparisons. Several modes of working are
supported [180]:

e The public screen and public desktop allow all participants involved
to view one participants screen or physical desktop. This mode im-
plements multi-casting of the changes made to one screen or desktop.
Only the owner of the screen/desktop may update it.

e Desktop on screen and desktop on desktop allow participants to draw
sketches and comment the contents of other developer’s screens or
desktops, using overlays. Experimental evidence indicates that users
easily differentiates up to three overlays.

e The shared tool mode allows all participants to simultaneously view
and edit conceptual models.

The usefulness of these modes are dependent on the presence of synchro-

nized sound or video and the possibility of flexible switching between

modes.

— Asynchronous negotiations: In this case one relies on written communi-
cation in the form of comments and cut-and-paste versions, and multi-
media annotations to the artifacts. The multi-media messages passed
between participants are based on the candidate versions. The messages
can contain annotations to one or several candidate versions in the form
of synchronized pointing, drawing, writing, and speaking [124]. To anno-
tate a local version of a model, one would add a transparent annotation

238 7. Means for Achieving Social Quality

layer to it, where the annotation is entered. This may be played back in
synchronous mode, playing back voice comments, the cursor movements
of a stylus, as well as hand-drawn and typed messages.

Below, we present an outline of an approach to model-integration in PPP.

7.2 Model Integration in PPP

Model integration is a general process where one based on several conceptual
models create a single model.

Model integration techniques can be useful on many different areas of
conceptual modeling, not only to enhance social quality of models. We have
divided the overview given here in three areas:

— Intra-project integration.
— Inter-project integration.
— Inter-organizational integration.

7.2.1 Intra-project Model Integration

In this case, the model integration happens within a project, integrating
models that are created specifically in the project. All the actors that are
the sources of the models to be integrated are expected to be available. The
languages that are used for modeling in this case are all part of the PPP
conceptual framework presented in Chap. 2.5.

Several cases can be perceived:

— A set of models created by the same actor in different modeling languages
need to be integrated. This typically needs to be done before integrating
the views of the actor with models based on the local reality of other ac-
tors. To support this one can use the same links between models that are
utilized for the driving-questions techniques discussed in Chap. 5. In addi-
tion, one should try to get the vocabulary consistent, but as part of building
up the thesaurus also indicate the semantic distance between similar and
dissimilar terms [199].

— Two or more models developed independently by different actors in the
audience are to be integrated. Depending on the overlap of the areas of
modeling, one should expect more or less overlap in the models. Generally,
one should in this case rather look after similarities than differences in
the models to be compared. When the models are written in the same
language, and using the same parts of the language, one can compare the
constructs in the models, and in addition apply the thesaurus developed
to discover potential synonyms. An example of this kind of matching is
given in Chap. 8. As indicated in work on model integration of structural
models [123], the same situation can often be described using different

7.2 Model Integration in PPP 239

modeling constructs. Because of this it might also be beneficial to compare
the statements of the models and not the modeling constructs directly, but
also here use fuzzy search applying the thesaurus information.

If the models are developed using different parts of the language, the com-
parison is limited to the parts that are used in both models, when compar-
ing at the component-level. When comparing at the statement-level, there
is no change.

If the models to be compared are developed in different languages, e.g.
PPM and ONER, one can use the driving questions technique presented
in Sect. 5.3 to create preliminary models in the other languages, and use
these for the first comparison. Alternatively, one might compare on the
statement-level directly also here.

— The models have a common predecessor model which they are based on.
The models to be integrated can either be created by the same actor or by
different, actors. This area include the traditional merging of two variant
models as discussed by Andersen [7], or the integration of viewspecs as
discussed by Seltveit [331]. In both cases, one start out with a set of state-
ments in the original model, and based on this adds and/or deletes a set of
statements. When using a filter, one starts out deleting a set of statements
from the original model, which are to be put back at a later point in time.
The main approach in this situation can thus apply the explicit knowledge
of the statements that are inserted or deleted as part of modeling.

An example of the conflict resolution process within a project using tech-
niques such as rule-hierarchies, IBIS and CATWOE are presented briefly
below. In the example, the main participants were AS, OIL, JK in addition
to the group developing the new system, denoted ’GR’ below.

As a starting point for this modeling, the root-definitions [61] for all par-
ticipants were established using the CATWOE-technique.

This basically answers the following question:

Who is doing what for whom, and to whom are they answerable,
what assumptions are being made, and in what environment is
this happening?

Costumer is the 'whom’, Actor is 'who’, Transformation is 'what’, Weltanschauung
is ’assumptions’, Owner is the ’answerable’, and Environment is the environ-
ment.

Starting out with the CATWOE-analysis is deemed important to enable
the construction of individual models for the participants. The questions used
in the CATWOE-analysis are similar to what Gause and Weinberg terms
‘context-free questions’ [132], which they also propose to ask the stakeholders
of a project very early in development.

As an example, OIL gave the following response:

— Customer (the whom): The organizing chair of the conference and SEVU

240 7. Means for Achieving Social Quality

— Actor (the who): GR and JK.

— Transformation (the what): Good communication and coordination be-
tween SEVU and the organizing chair.

— Weltanschauung (the assumptions): A well-organized conference is of major
importance to the research group.

— Owner (the answerable): AS.

— Environment: The university.

As part of the CATWOE-analysis, the following goals were identified. The
source of each goal are indicated in italics.

— R1002: “It is recommended for the group to get a good grade on the
project” GR.

— R1003: “It is recommended for the group to make the customer satisfied”
GR.

— R1004: “It is obligatory for the group to keep within the time-budget”
GR.

— R5: “It is recommended for the organizing committee to create interest for
the conference” JK.

— R152: “It is obligatory for the program coordinator to keep track of papers
and reviews of papers” JK.

— R902: “It is obligatory for the organizing chair to have good cooperation
and coordination with SEVU” OIL.

— R4: “It is obligatory for the organizing committee to create interest for
the conference” AS.

— R504: “It is recommended for the conference system to support other
conferences than ISD0O95” AS.

This initial situation is depicted in Fig. 7.5. Rules and arguments are given
in boxes, using arrows for relationships annotating these with O, R, P, D,
F, and REL (for an undetermined relation). The sources of both rules and
relationships are indicated in ellipses.

R1001

(<=3

O@

REL
R1003 R902 R152 R1004 R504
&S T &>

Fig. 7.5. Rules based on CATWOE analysis

Goals and rules that appear at this stage are not necessarily on a highest
level, thus one can work upwards from the existing goals. Some rules identified
on this basis which were generally applicable for the first modeling task were:

7.2 Model Integration in PPP 241

— R3: “It is recommended for a research group to arrange conferences”. This
goal recommends the goal R504 according to AS, with the additional
argument A1: “Many conferences of this kind are arranged. If we can come
up with a general system that can be used in other conferences arranged
in the community, this will be a contribution from us to the community”.

— R501: “It is recommended for our research group to arrange this particular
conference” AS. This is motivated both by rule R3 and other goals not
given here.

— R401: “It is recommended to apply the services of a local conference or-
ganization” OIL.

The overall goal-model can also be developed downwards. Below, we list

some of the rules being pursued regarding the choice of the target platform
for the CIS:

— R505: "It is obligatory that the conference system run on Unix” JK. This
is recommended by R152 and supported by the argument A2: “I (JK) will
be the main user of the system, and I use Unix for other work in connection
with the conference”.

— R506: “It is recommended that the system run on PC using MS-Windows”
AS. R504 using argument A3 “Many people use PC’s” is regarded by
AS to obligate R506. At the same time, this rule is discouraged by the
combined effect of R1004 and R505 according to JK due to the limited
resources of the project.

A goal-hierarchy only including the rules mentioned specifically in this chap-
ter is depicted in Fig. 7.6.

Here an issue is identified: The platform for the conference system. This
issue, with the identified positions and arguments for these can be transferred
into an IBIS-like tool [70], where a concentrated argumentation process on
this issue can be performed. Figure 7.7 gives an overview of the situation af-
ter additional positions and arguments have been added, some of which can
be transferred back into the goal-hierarchy. The decision of the argumenta-
tion was to choose Unix for the first version of the system, but perform a
generic design of the system to make later porting of the system easier. Since
arguments in this situation can be further motivated by additional rules, one
are also able to model the assumptions of arguments as suggested in the
extension of IBIS presented in [311].

Although discrepancies are resolved, one do not totally discard the other
alternatives. The pruned goal-hierarchy is showed in Fig. 7.8, also indicating
that R505 is linked to an issue.

In this way one may prevent premature closure by capturing the variety
of views. If it appears later in the project that new factors e.g. technical
constraints indicates that one should re-assess an issue, this can easily be
done. If many different positions are present on an issue, this might indicate
an area where changes are more likely to be done in the future. This might

242 7. Means for Achieving Social Quality

Fig. 7.6. Goal-hierarchy extended from CATWOE analysis

suggest that more effort should be used up front to prepare this area for
further development at a later stage. It is also important to note the design
decisions that are made based on the particular supporting software and
hardware actors in the project, since it is likely that one might want to
change this underlying architectural platform at a future time. Generally, the
argumentation structure which is used is believed to be a good way to capture
design decision, thus in a maintenance project enable a better understanding
of why the existing application system was made in the way it was.

7.2.2 Inter-project Model Integration

The models are developed in two different projects within the same organi-
zation. Examples are:

— A replacement system is made, based on functionality from one or more
previously independent application systems which have been developed
and maintained using conceptual models. These models can be expressed
in either the same or different languages.

— A maintenance project, further developing an application system which
have been developed using conceptual models in the case where one do
not automatically reuse the whole existing conceptual model. The existing
models can also have been created through re-engineering.

— An enterprise-wide model has been developed, and areas subsumed by this
model are to be developed in more detail in a development project. This
is similar to the above situation.

7.2 Model Integration in PPP 243

A
Ggheralfuse A
+ [+
+ Manyuse PC

p —
PC

- A
P - A | we use Unix

/ Limited
I PCand U resources

Plattform \
for system PD

Unix
P
Macintosh A
+ Many in
academia use
unix
Legend: | — Issue
P - Position A
A~ Argument Exist mac—
D — Decision program

Fig. 7.7. IBIS-network on the issue of system platform

— Several application system needs to access similar data, and one needs to
compare the structural models describing the data used by the different
systems to ensure that they are consistent.

In this case, additional terminological problems may appear. In the Sweden
Post case, a case study in the Tempora project, what the Post was selling
was called a ’product’ by the accounting department, and an ’article’ by the
marketing department. The data associated with ’article’ and ’product’ was
different although both refer to the same phenomena [331]. To address prob-
lems of this sort, a two-level thesaurus-structure, including also a taxonomy
of application domains [138] might be useful.

244 7. Means for Achieving Social Quality

R
R1001
I;I RAOUe—

o aD O
F> (o)
REL
R1003 @ R1004 R504
<l B T T TR A

A2

%;U
H

Fig. 7.8. Pruned goal-hierarchy after argumentation process

245

7.2 Model Integration in PPP

oIS TONELS
EEBER] 4 Pl
X NgsI oweN
Soua

sioup3
. KE‘ \A amas BWEN— (WJONIHLS
Y

EEREIN]

0 oz_Em EE=E

NV31008, E«m/ <
panaaoy \
-/: o 2ouasRjRY WwawWwoD,
mn; L uoisuawig g nuen 393N (ONTEIS
o RN
‘ ‘ (WJONTETS 4~ 7 WONELS
w&_wﬁ L I m%éme_ﬁ owen

memz
3Iva

- \ S Kﬁm/“ \A anen ﬁ ’%ﬁu,_aﬁt ‘:\A rr———
aepdn - - ponchons \

AUNOPIOM. TTFSIINI

"y
ITVT L sonos v” \Tg\/l\ 4 oo T.;.E& oS

“auieualy Soneoos

e ‘ ‘ . S moNEn
L WoNTETS ubom
I . PN S
(WONETS HIOTINT
e

,.. @ ozEm
sormis
s) mEmz

IV

—
. -~ s awa
w01 TS
uonduosaq . 1 @ L ‘
N y : : NS ﬂ s,_gg_‘,m
@SS | / Jouio)
uy
o
JaNqUIU0D 7 ey L BqUIBW- un‘\ JaqUIBW- uovvz _T%E%m ’v AA [v‘m;:\v WONEIS
ud
sousiaon
wedonied -"

__w._\E Hwa‘H, m— o

uosiod

uoneziuebio

piomsseg
\ 14N srew3 Xed ououd
UJONIELS
faunog! ssaippy awen BweuSI
\ H /. @ONEIS* WONWIS* @ONWIS (ONWIS ey oSEUI T wonms
' [V
(UJONIELS (oNHLS (UJONIELS (UJDNTELS (WONIELS

Fig. 7.9. ONER-model for the IFIP-case

246 7. Means for Achieving Social Quality

To further illustrate potential problems in this area, we have compared
the ONER-model supporting the paper-process both from the conference
case (in Fig. 7.9) and as it is modeled by Yang [404] based on the original
case-description for an IFIP-conference (in Fig. 7.10), i.e. to simulate the
comparison of an earlier application system supporting an area and the needs
for a new one. The model of the IFTP-case also consisted of a separate scenario
in connection with the practical arrangement of the conference, which does
not overlap with our model at all.

STRING
STRING

STRING .

STRING STRING STRING

STRING middle

first_name

person

referee journal
editor

research_
directions /
STRING partial_n

INTEGER

STRING

originality partial_n
INTEGER reprgsentation
technique_qualigy STRING y.
_— partition
INTEGER ~ ~ INTEGER
accepted rejected STRING
paper paper
INTEGER STRING
partial_n —
érouped_in
STRING
full_1
name
session

i INTEGER

Fig. 7.10. ONER-model for the traditional IFIP-case (From [404])

Comparing these models, we observe the following:

7.2 Model Integration in PPP 247

— There are some common entity-classes, e.g. person, referee, paper, and
session.

— There are some common types, e.g. name, address, country, email, phone,
title (of paper), name (of session). The specification of name is somewhat
different, and country and address is only indirectly linked to the person
in our case, through the affiliation relationship, and not directly as in the
IFIP-model.

— There are entity-classes that are given synonymous labels. (participant/potential
participant).

— There are entity-classes in the old diagram that are represented as relationship-
classes in the new diagram, e.g. review.

— There are similar entity-classes that are represented with different labels
e.g. CRC vs. accepted paper.

— There are similar relationship-classes that are represented with different
labels, partly because the old model use role-names on relationship-classes
and the new use relationship-names e.g. Presentation vs. grouped.-in, au-
thor vs. write.

— There are aspects that are represented as sub-classes in the old version
(accepted/rejected paper) which are represented as values of an attribute
in the new (state.name).

— There is a type in the old diagram that is represented as a scenario in
the new diagram, including values of attributes. (evaluation vs. dimen-
sion/value/scale.) The large difference here is caused by different require-
ments to flexibility of the solution.

— There are attributes in the old diagram that are represented as entity-
classes in the new e.g. comment.

— There are similar attributes with different labels e.g. number vs. reference
for paper.

— There are types in the old diagram that are represented as an entity-
class and a relationship-class in the new diagram (Paper cover subject
vs. paper.keywords and PC-member interest subject vs. referee studies).

In addition to the above differences, there are areas which are included in the
old diagram that are not included in the new, and vice versa.

7.2.3 Inter-organizational Model Integration

This can be interesting in several cases. A model is developed in an external
organization (e.g. a model of an application framework), and one wants to find
out to what extent this model is sufficiently close to a model developed within
the organization for the possible adoption of the framework. The models to be
compared are not necessarily written in the same language. Another possible
scenario for the need of performing inter-organizational model integration is
the case where several organizations needs to coordinate parts of its data-
processing, for instance when applying EDI, or when temporarily cooperating

248 7. Means for Achieving Social Quality

to form a virtual organization. Obviously also more permanent cooperation
through e.g. mergers can provoke the need for model integration of this sort.

Based on the above we would similarly expect large differences between
models in inter-organizational model integration also when they are expressed
in the same language. When being expressed in different languages the prob-
lems would potentially be larger, even if the languages share the same per-
spective.

Although matching can be done on type e.g. matching two processes based
on that they receive the same type of input and return the same type of
output [297], it is often dependent on using information in the labels of the
model, since there is a large number of e.g. process-diagrams that have the
same port-structures and that diagrams with different port-structures might
contain similar functionality. Thus even if the use of analogy for general
reuse [58, 251] can be a powerful mechanism, one can not expect to be able
to use this in all cases.

7.2.4 Outline of an Approach to Model Integration

One way of attacking this area within PPP is to use a (technical) actor model
as an outset for the comparisons on a high level. Features of the actor model
that can be utilized for model integration purposes are:

— Data accessible by the different actors.

— The capabilities of the actors. This might both be existing capabilities and
potential capabilities. The capabilities of an actor in certain roles can also
be interesting.

— The type of the items that the actors might receive and send to be able
to utilize the capabilities of the actors. This includes descriptions of the
interface of the actor.

— The rules that applies to the actor.

— Actual and potential supporting actors of the actor.

— Different abstractions of the actor such as ONER-models and PPMs.

We have opened up for the support of matching models written in differ-
ent languages, and possibly using different perspectives. To be meaningful,
there must be some potential for overlap between the models of the different
languages. Some examples are the comparison between an ER-model and a
ONER model, where the ONER language subsume the ER-language. This
can be supported by having translation facilities between the modeling lan-
guages, and perform comparisons based on transformed models [12]. More
complicated is the problem of comparing say a process and a data model. As
we have illustrated, there are some connection between the data and process
modeling languages in the conceptual framework, thus, these can be utilized
for a preliminary matching using the same principles that are used in the
technique of driving questions. Another approach to this, is the use of a
common underlying model, as is done in e.g. ARIES [24].

7.3 Chapter Summary 249

The actor-modeling language is meant to both give a view independent of
traditional modeling languages, by looking upon an actor as having certain
capabilities, and investigating actor support relationship between technical
actors. It also cover the use of traditional data, process, and rule-modeling.
It necessitates a translation from other models to this model to be useful in
extended inter-organizational reuse and matching. In addition to the use of
the actor-model, it should be possible to use the translations of conceptual
models into statements directly.

In cases where the models to be integrated do not have a common prede-
cessor, one should as a rule try to find the potential overlap between models
and not the difference, since at least in our experience the difference often
seems to be larger than the overlap. When having found models with cer-
tain overlap, one might apply a transformational approach to matching, thus
finding how many inserts and deletes of statements that must be done to
transfer one model to another, by utilizing the symmetry between inserts
and deletes. For models in specific languages e.g. ONER-models, one should
investigate heuristics in this search to make it possible to apply the technique
more efficiently. Specific approaches for merging models that have the same
predecessor have been discussed in [7, 331] and was discussed above. We will
also look upon this in some more detail in the next chapter.

7.3 Chapter Summary

In this chapter we looked upon what we have termed social quality. The

main goal defined for social quality is agreement. Six kinds of agreement was
identified.

— Relative agreement in interpretation
— Absolute agreement in interpretation
— Relative agreement in knowledge

— Absolute agreement in knowledge

— Relative agreement in model

— Absolute agreement in model

Main activities for achieving feasible agreement are model integration and
conflict resolution. The general process has many similarities with view inte-
gration, which has been a topic of much research in the database community.
The process can be considered as consisting of four subprocesses.

— Pre-integration

— Viewpoint comparison

— Viewpoint conforming

— Merging and restructuring

250 7. Means for Achieving Social Quality

Model merging can be supported in several ways, having computerized
support for manual integration, possibly with the use of CSCW-techniques
as one avenue for exploration.

Model integration techniques can be useful on many different areas of
conceptual modeling, not only to enhance social quality of models. We have
identified three areas:

— Intra-project integration. Model integration is performed within a project,
integrating models that are created specifically for the project

— Inter-project integration. The models to be integrated are developed in two
different projects within the same organization.

— Inter-organizational integration. Models developed in different organiza-
tions are integrated.

The briefness of this chapter partly mirrors the fact that comparatively lit-
tle work has been done on the area outside the database community. Looking
into proceedings from current conferences though, we see that much work is
currently done in the area, and we would expect many interesting techniques
and tools to surface in the years to come.

8. A Methodology for Conceptual Modeling

Whereas the last four chapters have presented different techniques for con-
ceptual modeling, we will in this chapter present a more detailed way of ap-
plying a conceptual framework (in this case PPP) as part of a development
methodology. This include process heuristics, use of modeling in development,
use, and maintenance of computerized information systems, and configura-
tion management of conceptual models. In the next section, we will put this
approach into a wider context by presenting a classification framework for
computerized information systems support.

It is important to appreciate that what is presented in this chapter is only
one of several possible approaches to conceptual modeling in computerized
information systems support in organizations. It should not be looked upon
as a suggestion for an ultimate methodology, but rather as a set of possible
guidelines. A comprehensive CIS-development and maintenance methodology
would typically take up many hundred pages of text, thus not being possible
to include in a book of this kind in its entirety.

We will base much of the treatment in this chapter on the case study
described briefly in the Chap. 1, describing an information system for sup-
porting the arrangement of a scientific (IFIP) conference.

IFIP is the acronym for International Federation for Information Process-
ing. An IFIP working conference is an international conference that provides
an opportunity for the computer scientists from IFIP member countries to
discuss and interchange research results and new ideas on selected research
fields.

The management of such a conference is usually done by two cooperating
committees. The program committee (PC) handles the contents of the confer-
ence, say, the reviewing of papers, comprising sessions and tutorials, etc. The
organizing committee (OC) handles the administration work, e.g. sending out
invitations, registration of attendants, arranging time and places for sessions,
dealing with financial matters, etc.

The system developed in the case was to support the work of the pro-
gram committee and the program organizers. The case will be further de-
scribed throughout the chapter. In addition to using the case to illustrate the
methodology, we also use it to give examples of the different sets that are
described in connection to the quality framework.

252 8. A Methodology for Conceptual Modeling

Before going into the detailed description of the methodology, we will
present a classification framework for methodologies for computerized infor-
mation systems.

8.1 Classification of Methodologies for Computerized
Information Systems Support

When deciding on relevant dimensions for a classification framework, we have
asked the questions why, when, what, how, who, where, and for how long in
the context of CIS-support. We have classified methodologies according to
the following areas:

— Why do we attack the overall problem area in the way we do? This is
covered by the “Weltanschauung”, i.e. the underlying philosophical view
of the methodology.

— When is the methodology applied? We have termed this aspect coverage
in process, meaning the main tasks that are covered by the methodology.

— What part of the CIS-portfolio of information systems is supported by the
methodology? we have termed this aspect coverage in product.

— How do the methodology help in achieving the goals of CIS-support? We
have specifically concentrated on reuse and representation of product and
process in the methodology, with emphasis on conceptual modeling.

— Who is involved and where are the changes done? This is discussed under
the area of stakeholder participation.

— For how long has the methodology been used. We term this aspect ma-
turity: Is the methodology mature, being used for a long time in many
organizations, with tool-support and support for evolution of the method-

ology.

Below, we will define and discuss each area in more detail.

8.1.1 “Weltanschauung”

FRISCO [109] differentiate between three different views of the world:

— Objectivistic: “Reality” exists independently of any observer and merely
needs to be mapped to an adequate description. For the objectivist, the
relationship between reality and models thereof is trivial or obvious.

— Constructivistic: “Reality” exists independently of any observer, but what
each person possess is a restricted mental model only. For the construc-
tivist, the relationship between “reality” and models of this reality are
subject to negotiations among the community of observers and may be
adapted from time to time.

8.1 Classification of Methodologies for Computerized Information Systems Support

— Mentalistic: To talk about “reality” as such does not make sense because we
can only form mental constructions of our perceptions. For the mentalist,
what people usually call “reality” as well as its relationship to any model
of it is totally dependent on the observer.

Methodologies can be categorized as being either objectivistic or construc-
tivistic. The “weltanschauung” of a methodology is often not explicitly stated
in descriptions of the methodology, but often appears only indirectly. Since
different underlying philosophies may lead to radically different approaches, it
is important to establish this. The distinction into objectivistic and construc-
tivistic is parallel to the distinction between objectivistic and subjectivistic
in the overview of Hirschheim and Klein [170]. Hirschheim and Klein also dis-
tinguish along the order-conflict dimension. In this dimension, the order or
integration view emphasizes a social world characterized by order, stability,
integration, consensus, and functional coordination. The conflict or coercion
view stresses change, conflict, disintegration, and coercion. These two dimen-
sions were originally identified by Burrel and Morgan [50] in the context of
organizational and social research.

Based on the discussion in the introduction of the book, it should come as
no surprise that we find it beneficial to adapt a constructivistic world-view.
Note however that we have a somewhat different approach to constructivism
than the one described in the FRISCO-report.

8.1.2 Coverage in process

Do the methodology address:

— Planning changes to the overall CIS-support.

— Development of application systems.

— Use and operation of application systems.

— Maintenance and evolution of application systems.

— Management of planning, development, operations, and/or maintenance of
application systems.

One or more of the above areas can be covered, more or less completely and in
varying degrees of detail. More detailed specifications of dimensions of devel-
opment methodologies are given by Blum [29], Davis [79] and Lyytinen [248].
Whereas Davis classifies a methodology according to the way it is able to
address varying user-needs over time, Blum classifies development method-
ologies in two dimensions; if they are product or problem-oriented, and if they
are conceptual or formal. The product vs. problem-oriented dimension as dis-
cussed by Blum is in our view a distinction on the part of development that is
covered (analysis or design). The conceptual vs. formal distinction is covered
under representation of process and product below. Lyytinen includes aspect
covered by the ”weltanschauung” and representation of product and process,

253

254 8. A Methodology for Conceptual Modeling

in addition to linking technical, linguistic, and organizational aspects in a
development methodology.

We claim that a comprehensive methodology should cover both devel-
opment, maintenance, use, operations, planning and management in an inte-
grated manner. The emphasis in this book is put on development and mainte-
nance, but also the usage aspect is important, enabling the different end-users
to make sense of the existing applications system in the organization, both
to be able to use them more efficiently, and to be able to come up with
constructive change-request and ideas for more revolutionary changes in the
CIS support of the organization when the environment of the organization
is changing. We also claim that it is beneficial to not differentiate between
development and maintenance in most cases. This is based on the figures
appearing in our survey-investigation and in accompanying work presented
in [171, 207].

It is both natural and desirable for CISs to change. As shown both in
our own and other surveys, approximately half of the work which is nor-
mally termed maintenance is in fact further development of the information
systems portfolio, and should be given credit as such. On the other hand,
almost half of the new systems being developed are replacement systems,
being functional maintenance not enhancing the functional coverage of the
portfolio or in other words, what the users can do with the systems. Thus seen
from the end-users point of view, a better assessment of information system
support efficiency seems to be found by blurring the old temporal distinction
between maintenance and development, and instead focus on the percentage
of functional development. This is difficult to achieve when having a large
mental and organizational gap between development and maintenance, even
though the actual tasks being done have many similarities. Maintenance has
traditionally been looked upon as a more boring and less challenging task
than development [137]. Even if there are signs on that this view might be
changing [224] this still appears to be the prominent view among practition-
ers.

Swanson [357] recognizes the similarities of the tasks of development and
maintenance, but still argues for keeping the old distinction based on the
following perceived differences:

— As also noted by Glass [137], a large proportion of traditional maintenance
work is to perform "un-design” of existing systems, finding out what the
system does. We argue that with modern development approaches where
as much as possible of the work should take place on a specification and
design level, the difference will be smaller. We also note that because of
the large amount of replacement work of often poorly documented appli-
cation systems, code understanding problems are often just as important
when developing “new” systems as when maintaining old systems today.
Code and design understanding will also often be a problem when reusing
components and other artifacts from other projects, and during traditional

8.1 Classification of Methodologies for Computerized Information Systems Support 255

development, when due to changing work load, developers have to work on
other peoples development deliverables for instance during system-test, or
because developers are transferred to other projects.

— It is generally believed that “Maintenance of systems is characterized by
problems of unpredictable urgency and significant consequent fire-fighting.
In difference to new systems development, which is buffered from the day
to day tasks of the users, the systems in production is much more visi-
ble” [357]. Traditionally, it has been found that approximately 20% of the
maintenance work is corrective maintenance [234], and our own result of
26% [215] and 21of work that is performed to do immediately necessary
corrective maintenance on the application level, we found in our own inves-
tigation [215] a percentage of 6%, the similar figure in Lientz/Swanson [234]
being 12%. The total amount on corrective maintenance on the individ-
ual systems in our investigations was 15%. Jorgensen [194] indicate that
the assessed corrective percentage of the work used on maintenance of-
ten might be exaggerated since these kind of problems are more visible
for management. They found in their investigation of individual mainte-
nance tasks that even if 38% of the changes were corrective, this took only
up 9% of the time used for maintenance. Management assessed the per-
centage of corrective maintenance to be 19%. Those managers who based
their answers on good data had a result of 9% corrective maintenance.
Also in our investigation, we found a similar tendency, on the data of the
maintenance task of the individual systems, those reporting to have good
data, reported that only 8% of the work effort was corrective maintenance,
4% being emergency fixes. The same effect on over-assessing the amount
of corrective maintenance has been reported earlier by Arnold [10]. In a
case study on maintenance in American and Australian organizations of
COBOL applications, corrective maintenance was reported to constitute a
minor problem where less than 10% of the programs studied had undergone
more than two corrective maintenance activities during their lifetime [382].
The significant factor were program complexity and programming style.
Related to this is the results of a survey reported on in [87] which gave no
conclusive evidence that organizations using modern development methods
used less time on maintenance activities. On the other hand, time spent on
emergency error corrections as well as the number of system failures de-
crease significantly with the use of modern development methods. Systems
developed with modern methodologies seemed to facilitate making greater
changes in functionality as the systems aged, and the request from users
seemed more reasonable, based on a better understanding of the system.
The problem of many small maintenance tasks done more or less continu-
ously seems to be increased by how maintenance is often done, in an event-
driven manner. In the Jorgensen investigation [195], where 38% of the tasks
were of an corrective nature, as much as 2/3 of the tasks where classified

256 8. A Methodology for Conceptual Modeling

to have high importance by the maintainers themselves. The problem of
changing priorities as described by Dekleva [86] is closely related to this.
Even if the problem of emergency fixes seems to be smaller than earlier
perceived, a methodology uniting development and maintenance must take
into account that one has to be able to perform rapid changes to software
artifacts.

8.1.3 Coverage in product

Is the method concerned with the planning, development, operating, use,
and/or maintenance of

— One single application system.

— A family of related application systems.

— The whole portfolio of application systems in an organization.

— The totality of goals, business process, people, and technology used within
the organization.

Since the computerized information systems in the organization is also linked
to the strategies, business processes, and people of the organization, a further
natural extension is to integrate the planned change effort of all these areas,
at least on a high level.

Over time, newer application systems originate in niches provided by older
ones, and identifiable families of systems come to exist. Relationships among
families are further established. In the long run, an organization is served
more by its CISs as a whole than it is by the application systems taken
individually. Based on this, we argue that it is beneficial for a methodology
to make it possible to consider the whole portfolio and not only the single
application system. For the end-users, it is not important which application
system that is changed. What is important is that their perceived needs are
supported by the complete portfolio. This do obviously not mean that one
always need to consider the whole portfolio when enhancing the CIS-support
of the organization.

Application systems are not developed in a vacuum. They are related to
old systems, by inheriting data and functionality, and they are integrated to
other systems by data, control, presentation philosophy, and workflow [369].
As reported in our investigations [171, 215], the most important reason for
replacements apart from systems being unmaintainable, was integration and
standardization of application systems. Often when doing this kind of inte-
gration, it can be useful to collect the functionality of several existing appli-
cation systems into a new application system, something which is not well
supported when having strict borders between what is inside and outside of
an application system.

As noted in [357] the CISs of an organization tend to congregate and de-
velop as families. By original design or not, they come to rely upon each other
for their data. In Swanson/Beath [357] 56% of the systems where connected

8.1 Classification of Methodologies for Computerized Information Systems Support

to other systems through data integration. In our survey, we found that 73%
of the main computerized information systems in the organizations surveyed
were dependent on data produced by other systems. In 40% of the responses
to this question all the main system which the organizations depend upon
on a daily basis were regarded to be dependent on data produced by other
systems.

8.1.4 Reuse of product and process

Reusing experience is a key ingredient to progress in any discipline. Without
reuse everything must be re-learned and recreated; progress in an economical
fashion is unlikely. Overviews of dimensions of reuse are given in [122, 216,
308], and we have based our overview and classification of this area on this
work:

— By motivation: Why is reuse done. In addition to aspects such as productiv-
ity, other reasons for reusing existing solutions might be time to market,
flexibility, evolvability, capacity, quality and management of uncertainty
and risk.

— By substance: The essence of the items to be reused:

— Artifacts reuse: The artifacts can for instance be code, conceptual mod-
els, designs, specifications, objects, components, text, architectures, esti-
mating models or test data. In principle might all deliverables produced
during a project be reused later in some way.

— Process reuse: Formalizing and encapsulating software development pro-
cedure. Process reuse also means reusing skills and know-how, i.e. hav-
ing a development and maintenance methodology can be looked upon as
reuse in this sense.

— By development scope: The form and extent of reuse: This refers to whether
the reusable entities are from a source external or internal to a project or
organization. When being external to the project, one can also differentiate
between vertical and horizontal reuse.

— Vertical reuse is reuse within the same application area.

— Horizontal reuse is reuse across application areas.

— By management mode: How reuse is conducted:

— Planned reuse: The systematic and formal practice of reuse. Guidelines
and procedures for reuse have been defined, and metrics are being col-
lected to assess reuse performance.

— Ad-hoc reuse: An informal practice, in which components are selected
from general libraries.

— By technique: How reuse is implemented:

— Compositional reuse is the use of existing artifacts as building blocks for
new systems.

— Generative reuse is reuse at the specification level by means of design
and code-generators.

257

258 8. A Methodology for Conceptual Modeling

— By intention: Defines how elements will be reused:

— As-is or black-box reuse is reuse without modifications.

— Adapted. As with black-box, but with small changes due to porting issues
resulting from a different technological infrastructure.

— Modified or white-box reuse involves modifications of what is reused.

— Template. Rather than reusing the actual content, one reuse the format
of the deliverable in new deliverables.

— As idea. In this case one reuse only some main ideas from existing arti-
facts, but do not reuse neither large part of the contents or the format
of the original artifact.

It is usual to differentiate between methodologies being for reuse and those
being with reuse [199, 396]. Another distinction is between reuse-in-the-large
(e.g. reusing and fine-tuning whole applications) and reuse-in the-small (e.g.
reusing selected objects, components, and functions).

8.1.5 Stakeholder participation

As also discussed in Chap. 3 stakeholders in CIS-support can be divided into
the following groups [250]:

— Those who are responsible for its development, introduction and mainte-
nance, for example, the project manager, system developers, communica-
tions experts, technical authors, training and user support staff, and their
managers.

— Those with financial interest, responsible for the application systems sale
or purchase.

— Those who have an interest in its use, for example end-users, indirect users
and their managers.

We focus here specifically on end-user participation and define first some of
the important terms in connection to this in more detail.

A user of a CIS is defined as a person who potentially increases his knowl-
edge about some phenomena other than the CIS with the help of the CIS.
An end-user increases his and hers knowledge in areas which are relevant to
him independently of the actual CIS by interacting with the CIS. Indirect
users increase their knowledge by getting results such as for instance reports
or letters produced by the CIS without interacting directly with the CIS.

This is somewhat different from how ’user’ is often defined, terming the
system development and maintenance personnel as ’primary users’ [169] or
technical users. Not including these as users in the following discussion do
not mean that they are not important stakeholders of the CIS support.

The term ’participation’ means to take part in something. There exists
different forms of participation:

— Direct participation:
Every stakeholder has an opportunity to participate.

8.1 Classification of Methodologies for Computerized Information Systems Support

— Indirect participation:
Every stakeholder participate more or less through representatives that are
supposed to look after their interests. The representatives can either be:
— Selected: The representatives are picked out by somebody, e.g. manage-
ment.
— Elected: The representatives are chosen by those being represented.

According to Heller [166], participation is sharing power and influence. He
has divided the degree of influence and power into six categories as illustrated
in Figure 8.1.

Opportunity Advice Complete
No or to taken Joint control
minimal give into decision— (autonomy or
information Information advise consideration making delegation)
1 1 1 1 1 1
I 1 T T T 1
1 2 3 4 5 6

Fig. 8.1. Scale of influence and power

We would claim that participation when applied should be in categories 4,
5, and 6 on this scale, and will use this scale when classifying methodologies
according to this aspect.

User-participation can be assured by the application of different links be-
tween the users and the system developers, some of which are used primarily
under custom development where most of the functionality of the system is
developed from scratch (C), and some primarily being used under packaged
development, where most of the functionality of the system is delivered in a
pre-packaged manner (P) [200].

Due to the large number of potential stakeholders in a development effort,
in most cases representative participation will be the only practical possibil-
ity. From the point of view of social construction, it is doubtful that a user
representative can truly represent anyone else than himself. On the other
hand, even if the internal reality of each individual will always differ to some
degree, the explicit knowledge concerning a constrained area might be more
or less equal, especially within groups of social actors [136, 291]. Another
factor is the scope of participation, i.e. when do participation take place.
Usually one would expect that user-participation would take place heavily
in analysis and in acceptance testing, more lightly in design, and very little
in implementation, but this will often depend on the chosen methodology.
When it comes to suggesting improvements of the current information sys-
tem of the organization, direct participation should be possible. Also in the
project establishment, a larger proportion of the stakeholders should be able
to participate.

Many arguments for having participation have been given in the litera-
ture see e.g. [146, 268] for classifications. Here, user participation is basically

259

260 8. A Methodology for Conceptual Modeling

Table 8.1. Links between users and developers

Link Used in P/C
Facilitated team (e.g. JAD [13]) C
MIS intermediary C
Support line P/C
Survey P/C
Ul-prototype P/C
Functional prototyping P/C
Interview P/C
System testing P/C
E-mail/bulletin board P/C
Usability lab P/C
Observational study P/C
Marketing and sales P
User group P
Trade show P
Focus group P

motivated through a cost-benefit-perspective on the long run. Since all stake-
holders have their individual local reality, everyone have a potential useful
view of how the current situation can be improved. Including more people
in the process will ideally increase the possibility of keeping up with the
ever more rapidly changing environment of the organization. Added to this
is the traditional argument of including those who is believed to have rel-
evant knowledge in the area, and which are influenced by the solution. As
indicated in several surveys, general participation appears to be a general
indicator for (development) project success as perceived by all the different
stakeholders. In Bergersen [27], the three most important factors for over-
all perceived project success were found to be the goal-setting, management
support, and user-participation. In van Swede [377] the main contributions
of success in the sense of satisfaction of all stakeholders were a cooperative
environment, presence of a win-win starting point by considering the inter-
est of all stakeholder-group, quality of project staff, and quality of project
management.

Another aspect related to this point, is where updates of the CIS-portfolio
take place:

— In the user organization.

— Centrally, with one unit developing the core of the systems, which are then
customized locally.

— In a data department, developing customized systems.

— Externally developed packages with large local customization.

— By a different, known organization altogether (outsourcing).

— Externally developed packages with small local customization.

8.1 Classification of Methodologies for Computerized Information Systems Support

— By a set of partly unknown external organizations (e.g. by reusing compo-
nents available on the Internet).

Typically, one would expect a mix of these models within the support
of a portfolio. We will not investigate this in detail here. The possibility of
active user participation typically diminishes as we go downward in this list
of delivery methods.

8.1.6 Representation of product and process

Knowledge about the process and the product of CIS development and main-
tenance can be represented using both linguistic and non-linguistic means
such as audio and video. Defined representational languages can be informal,
semi-formal, or formal, having a logical and/or a executional semantics. Since
we already have treated modeling aspects in detail in this book, we will not
discuss this in anymore detail here.

8.1.7 Maturity

Whereas some methodologies have been used for many years by many orga-
nizations, others are only described in theory, and never tried out in practice.
When discussing the maturity of a methodology, we can differentiate between
the following factors:

— Is the methodology properly described? A description of a methodology is
a model, and one can use the same approach as has been used in this book
for assessing the quality of models and modeling languages in general.

— Is the methodology supported by tools(both for navigation, methodology
adaptation and development and storing of artifacts)?

— Is the methodology used and updated through practical application? Is it
used by many organization, supporting a large part of the portfolios in
these organizations?

— Is the methodology undergoing a conscious evolution based on experience
with it and scientific study of the use of the methodology?

Different, parts of a methodology will often be of varying maturity.

Taking a philosophical standpoint neither reuse nor conceptual modeling
nor having a defined methodology can be optimal, since all situations are
unique, and thus in principle can best be attacked by using unique means.
Reusing artifacts originally produced for some other purpose, in effect means
to apply an externalization of the local reality of someone else than the cur-
rent stakeholders, which thus can not be optimal. On the other hand, reuse
is performed all the time. Using a commercial DBMS is for instance reuse,
but it is not very wise to produce your own database management system
when you perceive a need for this kind of functionality if you do not have

261

262 8. A Methodology for Conceptual Modeling

very special needs. Said bluntly, it is not very useful to use ten years to de-
velop an application system, because one wants an optimal process of social
construction. A balance between the different concerns brought up by our
philosophical outlook is thus necessary

8.2 Conceptual Modeling in CIS Support in
Organizations

As indicated in the previous section there is much more to CIS-support than
conceptual modeling. On the other hand, conceptual modeling is looked upon
as an important technique for reducing the gap between the user-communities
local reality and computing technology supporting the social construction of
the technology. Conceptual modeling is also looked upon as important for
supporting both generative and compositional reuse both on a project and
portfolio level over the life time of the system. This do not mean that we
are not aware of other techniques for specifying requirements such as ethno-
graphic techniques [141]. Where appropriate, also other aspects are mentioned
including their links to conceptual modeling, but these will not be discussed
in detail. This indicates that our suggested guidelines for a methodology is
not in any sense complete. We are for instance not discussing project es-
tablishment which would be part of the planning activities and which could
include many techniques from organizational development [74]. One specific
technique found in organizational development literature that has influenced
the description given below, is the search conference technique [107, 323].
This technique applies similar principles to participation that is used here.
The technique has also been used earlier within application system develop-
ment in Norway [370].We start with briefly discussing participation in some
more detail.

8.2.1 Principles of Stakeholder Participation

Participation should ideally take place according to the process depicted
in Fig. 8.2. The figure is adapted from a similar figure used in work in
organizational development on participative action research [102] where a
philosophical outlook that is similar to ours is used.

Before the outset of the project, a project establishment phase has been
performed on some level and are taken as the starting point for the project.
Users and other stakeholders all having their own internal reality and devel-
opers which also have individualized theories on the organizational reality
and systems development and maintenance meets on arenas for dialogue.

The developers are more or less to be regarded as outsiders to the user
community, either they are external consultants, or they are working in the
CIS-department of the organization. Both the outsider’s (i.e. systems devel-
opers) local reality and the insiders (i.e. primarily users) local reality are

8.2 Conceptual Modeling in CIS Support in Organizations 263

Project
establishment

i

o
o
o

Developer "-_
framework/ K
Othe formal theory H
stakeholders . H
s, S
Externalization
Doing |Speaking | Writing
Sensemaking New Sensemaking
organizational —
reality

Fig. 8.2. Co-generative learning in systems development

regarded to be equally valid. This is necessary to avoid the problem of model
monopoly in user participation where the system developers’ or some group’s
perception of the world dominates the discussion, something that can result
in what Habermas [154] terms ’'naive consensus’. Braten has developed the
following guidelines [38] to avoid this:

1. Participants must be aware of the mechanisms of model monopoly.

2. One must have several different models available, and accept the validity
of the individual models of each participant.

3. One must use time to develop an understanding of the participants own
premises and models.

4. One must have an atmosphere that facilitates a democratic dialogue to
eventually reach a common understanding of the problem, or at least an
understanding of what the disagreement is all about.

Stated in our terminology, the last point means that one needs to achieve
feasible comprehension and agreement on the constructed conceptual models.

In addition, it is important that all the participants are given training
in the use of the conceptual modeling languages that are used. As stated
by Heller [166], true participation necessitate competence. If the user par-

264 8. A Methodology for Conceptual Modeling

ticipants are supposed to be actively taking part in the model construction,
they must have developed necessary skills in this in addition to having skills
related to the application domain. This means that just being shown existing
models that have been made by others for “validation” will not be sufficient,
even when they are accompanied by intelligent explanations.

The participants will as a result of the democratic dialogues on given are-
nas externalize their reality in different ways. The externalization may result
in both linguistic and technological artifacts, being first visible only within
the project or for a limited group in the project. The linguistic artifacts will
partly be in the form of conceptual models, which are one of the ways of
externalizing ones local or shared reality through writing. Other linguistic
artifacts can be made using natural language. Explaining these to others and
arguing about them will be externalization in speech whereas when creating
a prototype based on the conceptual model, others can use this for external-
ization of additional views through action. The models will be externalized
and first be part of a larger organizational reality when committed to the
organization in the form of an application system produced on the basis of
the models.

From these externalizations the different stakeholders will be able to in-
ternalize the changes in their own local reality, and thus be able to discuss
discrepancies and ultimately be able to apply the CIS effectively.

Overall Methodology. The approach to conceptual modeling that we will
outline have some similarities with the approach developed for Tempora [367].
The modeling methodology is updated, including the use of techniques de-
veloped in PPP as described throughout the book to enhance the quality of
the models and focusing on the social construction process.

Development of conceptual models is divided into several tasks, based on
differences in the modeling domain:

— Development of conceptual models of the perceived current situation:
The behavior, structure, rules, and actors in the problem domain including
both computerized and manual data processing in the organization are
described and analyzed. This is a description of the current organizational
reality as it is internalized by the participants. A learning process about the
current situation is meant to take place among all participants, in particular
among future users and the developers of the system. The resulting model
is often described as the As-Is model.

— Development of conceptual models of an perceived improved situation:
This is also performed by first not taking a CIS solution into account, but
is restricted by the environment that the project is performed within. In
the end of this task, one specify specifically the external requirements to
the CIS. The resulting model is often described as the To-Be model.

— Development of conceptual model of the future CIS:

The behavior and structure of an application system are described and
analyzed. Everything needed for an executable specification should be pro-

8.2 Conceptual Modeling in CIS Support in Organizations 265

vided. This also includes the parallel and potentially intertwined devel-
opment of a user-interface description. The models are late in this phase
extended to include detailed design and computational semantics are speci-
fied. The resulting models ire often described as requirements specifications
and design respectably
— Implementation:

Based on the selected supportive technical actors such as the operating
system and the DBMS, this is a more or less automatic translation of
the design into an application system. The database of the application is
populated, and the application is released to the organization.

Different project models can be overlaid the proposed approach. We will
thus not present the methodology as a set of interconnected tasks although
several such models should be possible to overlay the tasks described, making
the approach more suitable for project management. Project management as
such is regarded as being beyond the scope of the book. What we will present,
is a set of general process heuristics linking the different modeling efforts up
to the quality framework presented in Chap. 3. This overview is based on
work performed by Krogstie and Sindre [345]. After this we will look in more
detail upon a possible application of our conceptual framework in more detail
concentrating on one of the modeling efforts: Developing conceptual models
of the perceived current situation. In the end of this section we will outline
the overall methodology for a set of projects.

8.2.2 Process Heuristics in Conceptual Modeling

Heuristics based on data which can be collected during modeling can be used
to:

— Guide the actions of the current project.
— Guide the evolution of the organization’s CIS-support methodology.

These issues can be called process support and meta-process support,
respectively [181]. We will here focus on the first subject.

Overall Idea of the Process. In [239] the modeling process is vaguely
described as consisting of cycles of expansion and consolidation of M. In the
following we will elaborate more on this idea, to prepare the ground for a
discussion of process heuristics. Our idea of the process is illustrated as a
state transition model in Fig. 8.3. The diagram can be explained as follows:

— P - preparation: In this state, the organization is performing actions in
preparation of the modeling itself, e.g. selection of participants, training,
and planning.

— E - expansion: Model statements are given, hence M is growing. During
expansion, statements may be made more or less uncritically, i.e. thorough
validation is not undertaken, and there might be errors introduced in M.

266 8. A Methodology for Conceptual Modeling

Still, as long as some valid statements are made, M’s degree of complete-
ness will grow.

— C - consolidation: The model statements (especially those captured in
the previous expansion phase) are consolidated with respect to wvalidity,
comprehension, and agreement, as defined in Fig. 3.

— S — suspension: The modeling activity is suspended. There may be several
reasons for suspension. The model may have been agreed upon and “frozen”
(e.g. to start the next modeling phase), or the project or a part of it may
have been temporarily or permanently aborted.

This diagram consists of an inner cycle of expansion and consolidation, and
an outer cycle including preparation and suspension. The starting state has
been defined as S, i.e. before you do anything, you are in a state of suspension.
The fact that there is no accepting state reflects the view that a computerized
organizational information system is never finished.

Fig. 8.3. The SPEC-cycle for modeling

Considering the entire modeling effort, there will be a lot of work in
parallel by various participants. Hence, it is generally impossible to observe
the simple state-changes of Fig. 8.3 for the model as a whole. It applies to
smaller parts, the entire process then being composed of multiple such cycles.

The focus of the heuristics to be discussed here will mostly be on the
inner cycle, in particular the switching between E and C. This switch can be
based on the following;:

— Resource limit: You are supposed to use a certain amount of time or man-
power for E, then go to C, and vice versa, and similarly for E and C
together vs. S.

— Chunk size: The number of statements made at one visit in E. When this
size has been reached, there may be a policy to switch to C.

— Progress: You observe the progress made at E or C and switch when this
has fallen below a certain threshold. The progress will decrease when the
process has been in the same state for a while because of a phenomenon
that may be called exhaustion: the most evident statements will be stated
first, and the most evident errors found first. Moreover, staying too long

8.2 Conceptual Modeling in CIS Support in Organizations 267

in E will yield a big chunk, for which incomprehension and disagreement
is likely to hinder further growth of the model.

The three above strategies will be combined to make a practical process.

Gathering of Process Data. To start with, we will identify what data
should be delivered to enable the heuristics. Then we will continue by briefly
discussing how this can be obtained.

To determine the progress of modeling and the extent to which feasible
quality has been reached, it is useful to know the point estimates for the
quality goals, and their corresponding ratios (vs. resource consumption). In
addition, model size has been included because it is important in the manage-
ment of expansion, and model value because it is important in considerations
about feasibility.

— perceived validity (PV), and ratio of perceived validity (PVR)
— perceived completeness (PC), and (PCR)

— perceived pragmatic quality (PP), and (PPR)

— perceived social quality (PS), and (PSR)

— perceived knowledge quality (PK), and (PKR)

— model size (MS), and (MSR)

— model value (MV), and (MVR)

The model size should be possible to obtain automatically. For the other
data, one need to register:

— For all parts of the model, which have been perceived as complete (within
their scope), which have been perceived as incomplete, and how big is this
incompletion estimated to be.

— For all statements, which have been acknowledged as comprehended, which
have been turned out to be incomprehensible, and which have not yet been
checked.

— For all statements, which have been agreed upon and by whom, which have
been disagreed upon and by whom, and which have not yet been checked.

— For each activity (here: each visit at E or C), how much resources are
spent.

— For each activity, what is the perceived value increment to the model.

Some of these are easier to obtain than others. The most complicated are
perceived completeness and model value. Even if these are dropped, it will
be possible to provide some useful heuristics, as will be shown below. The
phrase “for all statements” may give the impression that the above requires
an enormous registration work. However, this need not be the case. E.g.
discussing agreement of an ONER-model, it should be easy to implement
functionality for quickly selecting larger parts of the diagram to mark it as
agreed, open, or disagreed upon. Depending on the modeling situation (i.e.
which languages that are used, and which parts of the languages that are
used) one can get support from a CASE-tool to assess several of these based

268 8. A Methodology for Conceptual Modeling

on the knowledge of the modeling languages and metrics as indicated in
Chap. 5.3.

Heuristics to Guide the Current Process. Heuristics will be presented
as observed symptoms and possible actions. The list is not supposed to be
exhaustive, and as one symptom may have several causes, there are several
possible actions for each symptom. Heuristics must be evaluated by the par-
ticipants in any specific case.

Expansion Heuristics.

Symptom E1: Resource consumption ~ limit.
Symptom E2: MS increment ~ recommended chunk size.
Action (E1 or E2) :

Switch to consolidation. For E2, if the recommended size was reached

very easily, it might also be that the problem is simpler than assumed,

so that it can be interesting to increase the recommended chunk size.
Symptom E3: MSR < min.threshold (expansion is getting unproductive).
Symptom E4: MVR < 1 (growth of model value is less than resources being

spent, i.e. work currently being done is perceived to yield deficit).
Actions (E3 or E4) :

— Switch to consolidation (if the problem is due to significant incompre-
hension or disagreement). If the chunk is well within the recommended
size, it may also be sensible to lower the recommended chunk size.

— Switch to other techniques (if the problem is due to exhaustive use of
some techniques and there are others which can be tried).

— Involve new participants (if the problem is due to exhaustive use of
some participants and there are others which is perceived to possess
relevant knowledge).

As shown here, an observed symptom from the collected information will
not define a unique action; there has to be further considerations by the
participants.

Consolidation Heuristics. Consolidation heuristics are more complex than
expansion heuristics, since there are more goals and measures involved. We
will avoid listing the most obvious heuristics. Hence, it is sensible to address
pragmatic quality before validity, completeness, and agreement because com-
prehension of the model is necessary to achieve anything else with some
certainty. Further, it is sensible to address validity and agreement before
completeness. Guidance for this sequencing can be done by heuristics investi-
gating the values PP, PV, PS, PC. This will not be discussed below. Instead
we will look at symptoms indicating problems with the consolidation being
done.

Symptom C1: Resource consumption ~ limit.
Action: Switch to expansion (if resources available) or to suspension.

8.2 Conceptual Modeling in CIS Support in Organizations 269

Symptom C2: PVR, PPR, PSR < min. threshold (i.e. consolidation is getting
exhausted).

Symptom C3: MVR < 1 (i.e. perceived value being added to the model by
consolidation is less than resources being spent).

Actions (C2 and C3) :

— Conclude that feasible quality has been reached (if the values for PV,
PC, PP, PS are good).

— Terminate this part of the project as hopeless, or at least backtrack to
some previous decision (if the values for PV, PC, PP, PS are bad and
it is impossible to see any way out).

— Switch to expansion (if the value for PC is worse than PV, PP, PS).

— Switch to other techniques or to additional language training (if one
or more of the values PV, PP, PS are unacceptable; concentrate on
techniques applicable for the quality aspect which is most pressing).

— Involve other participants (if one or more of the values PV, PP, PS are
unacceptable).

Heuristics to Guide Process Evolution. By aggregating collected in-
formation over several projects, one can also find heuristics to guide the
evolution of the modeling-process. Important questions are:

— What specification languages, techniques, tools etc. seems to be appropri-
ate for various categories of problems and for various stakeholders in the
organization?

Based on the user-modeling in connection with explanation generation, one
can retain the information about which participants have comprehended
what parts of which languages, for the use in later projects.

— What seems to be the optimal chunk size for various categories of problems
using different parts of the modeling languages?

— What seems to be the optimal statement growth ratio for various kinds of
problems using different parts of the modeling languages?

— What team constellations seem to be good for various kinds of problems?

— What kind of knowledge seems to be in shortage in the organization?

The results could be used to evaluate both approaches at the cycle-level and
the composition of the entire process, i.e. suitable breakdown in cycles. In
addition, post-project evaluations and evaluation based on actual usage of
the system can be taken into concern. This is a large topic which is related
to process improvement using frameworks such as CMM [300]. We will not
go into details of this here.

8.2.3 Development Based on the Use of Conceptual Modeling

In this situation, one start with a specification base that is empty with regard
to the application system that is of interest, and potentially a set of unsatis-
fied investigation reports. Due to the simplified situation that we look upon

270 8. A Methodology for Conceptual Modeling

here, the following will have many similarities to a traditional development
project only taking one application system into account.

Preparation for Modeling Based on the project establishment performed
during planning, the overall scope of the project has at this point been de-
cided. On this background, one needs to identify S, the set of stakeholders
to the project.

In the conference system development project, the identified stakeholders
were the organizing committee, the project group, the program committee,
which would be direct users of some parts of the system and not only indi-
rect as in traditional conference systems. Other potentially direct, but mostly
indirect users were those receiving call for papers and call for participation,
the subset of these being the contributors and/or conference attendants, the
supporting conference organization at the university (SEVU), and finally the
publisher of the proceedings (Chapman & Hall). For an extended project that
would include making the system into a share-ware solution, several other
potential stakeholders, i.e. potentially future program and organizing com-
mittees and different conference arrangement organizations and publishers
could be identified. The overall actor-model for the conference organization
is presented in Fig. 8.4.

8.2 Conceptual Modeling in CIS Support in Organizations 271

Top internal actor: IDT

Fig. 8.4. Overall actor model of ISDO95

272 8. A Methodology for Conceptual Modeling

Having identified the stakeholders, it is important to select P, the partic-
ipants of the project: According to Mumford [267] user-participation works
best with a two-tier structure of a steering committee and a development
group. This kind of organization is also often used when applying more tra-
ditional methodologies such as Method/1 [9]. The steering committee will set
the overall guidelines for the development group when it comes to the use of
resources. It’s members will typically include senior managers from affected
user areas, senior management from the CIS-department and senior trade
union officials, at least in Scandinavia. The development group will consist
of representatives of all major groups of stakeholders of the project. All in
the design group except system developers should be selected or elected in
a way that is acceptable to their constituents and seen as democratic. One
should be especially careful to avoid the situation where a group of end-users
are 'represented’ by a middle-level manager which himself has no intimate
knowledge of the detailed tasks to be supported by the CIS [200]. Seen from
the point of view of social construction, we recognize that the internal reality
of each individual is necessarily internally held and hence reflect individual
variation. It is nonetheless useful to distinguish those elements that through
socialization, interaction, or negotiation individuals have in common. It is
these collective cognitive elements that individuals draw on to construct and
reconstruct organizational reality. Gjersvik [136] terms this a local reality on
a group level. This is not the sum of the individuals local realities, nor is it
shared group reality. The group’s local reality is a way of acting in relation-
ship to the organization. The way of acting is developed inter-subjectively
among the individual actors of the group. Examples of groups holding a lo-
cal reality can be the members of a department, the managers, or the union
members. They develop this group local reality because they have common
work experiences, and because they identify with each other in the orga-
nizational context. In his case-study Gjersvik identified four distinct group
realities: Managers, supervisors, shop floor workers, and the union. Relevant
dimensions in such discussions are:

— Organizational level.

— Department.

— Educational background.

— If they traditionally are decision makers or not.
— Experience in the organization.

Mumford claim that there should be a representative from each major section
and function, each grade, age group, and sex if possible, in addition to the
system developers.

In addition can geographical location, experience with computers and
similar applications and methodology, and attitudes to change be used as
dividing lines. Using such characteristics, techniques such as QFD [258] iden-
tifies roles, which are aligned with the project success factors. In this way,
one are also able to assess the importance of the different roles, and thus the

8.2 Conceptual Modeling in CIS Support in Organizations 273

importance of the views and requirements of actors representing these roles
for overall project success.
Examples of users types that are specifically important include:

— They make up the majority of users for the application.

— They shape company opinions or attitudes.

— They were particularly disappointed with the prior system.
— hey have financial responsibility for the project.

In the conference support system development project, the “steering com-
mittee” consisted of AS! and a student supervisor MH. The system developers
will be represented as group GR, which consisted of students in the 4.year at
NTH, having mostly a similar educational background. Although individual
differences obviously existed, we will for simplicity treat them as a unity. In
addition, JK and OIL functioned as users to the system, JK being the pri-
mary end-user, at least of the first version of the system. AS also functioned
as a provider of information and as an indirect users. JK and AS was identi-
fied as the most important users to involve extensively. The PPP CASE-tool
is the main technical actor of the audience. The main social actors in the
project and their relationships are given in Fig. 8.5. All actors being part of
the project group in some role is denoted as internal actors in this model.

A= {A1, Az, A3, Ay, A5, Ag, A7, Ag, Ag, A1, A11, Ara, A13}

where A1 = AS, A2 = JK, A3 = OIL, A4 = JPH, A5 = YJ, Aﬁ =
KPH, A; = HFS, As = SG, Ay = EA, A1 = FVL, A;; = GR, A
= ISDO, A3 = PPP.

GR = {JPH,YJ,KPH,HFS,SG,EA FVL}
ISDO = P = {JK,OIL,AS,JPH,YJ KPH, HFS,SG,EA FVL}

Three distinct realities could be distinguished. The system developer
group GR, a mature professor AS, and two young researchers connected to
the research group of AS, JK and OIL which had a comparable background,
although with different requirements to a system of this sort.

To simplify, we can say that at the start of the project the main involved
actors had the following relevant knowledge:

— General system development knowledge C K1

— { General system development knowledge, PPP knowledge, Overall con-
ference organizing knowledge } C K3

— { General system development knowledge, Specific knowledge on WWW
and Ingres, PPP knowledge, Specific conference organizing knowledge }
C K2

— { General system development knowledge, PPP knowledge, Specific con-
ference organizing knowledge } C K3

! For brevity and privacy, we only indicate the initials of individuals.

274 8. A Methodology for Conceptual Modeling

Top internal actor: Project group 4

Report
responsible

Fig. 8.5. Actor model of project-participants

Before starting on the modeling effort, a preparation period to organize and
plan the project take place. This period also usually includes an initial learn-
ing course for the participants, depending on their current knowledge of the
modeling languages and the domain. Whereas the system developers might
use traditional ethnographic techniques such as on-site observations of on-
going activities, open-ended interviews, mappings of who is doing what and
where, exploration of roles and responsibilities, identification of tasks, goals,
and chains of accountability, and examinations of manuals, job descriptions,
directories, division charts, and other organizationally related documents, the
user-representatives will normally need training in the methodology and its
purpose, in addition to the use of the conceptual modeling languages. The
training at this point should concentrate on the most important parts of the
languages, so that the participants are able to model the most common sit-

8.2 Conceptual Modeling in CIS Support in Organizations 275

uations. Learning the more advanced parts should be done on an as needed
basis during the project [132]. If a user-model is to be applied in connection
with explanation-generation this can be initialized at this point.

In the conference case, the project group looked upon existing material de-
scribing professional conferences, and took contact with SEVU to get more
information regarding the practical arrangements of a conference, since it
appeared that this kind of knowledge was lacking among the original partici-
pants. Thus, one had here an example of inter-subjectively agreed knowledge
incompleteness that was remedied by contacting external experts in the field.

Another part of the preparation phase is the preparation of arenas for di-
alogue and modeling. This can be both the preparation of technical solutions,
i.e. live-boards, meeting-room system, or other co-located or distributed, syn-
chronous or asynchronous groupware solutions according to what is deemed
necessary and is available. Another possibility is to use rooms with plastic
walls which one are able to write/draw on or can paste and remove paper on
in order to illustrate different aspects as has been used in e.g. Tempora and
in the ABC-method [397] for preliminary modeling. These models can then
be transferred to a more persistent medium such as a CASE-tool to increase
the physical quality of the model on persistence and distributability and to
enable further advanced treatment of it.

At this point, selection of which languages to use at which stages are also
partly decided. In our case the total set of languages to use for conceptual
modeling is more or less given, i.e. £L =L ULy UL3UL4UL5ULg where Ly
= ONER, L, = PPM, L3 = DRL, Ly = Rule relationships, L5 = the Actor
modeling language, and Lg is the set of links between model elements in the
different languages.

Below, more general guidelines for which languages and part of languages
that have been found to be applicable at each stage are presented. The guide-
lines are partly based on practical experiences from the Tempora-project.

In the conference support system development project, the following was
decided upon:

— Development of conceptual models of the perceived current situation: Here
modeling of a typical conference of this sort was performed. Languages to
be used: Informal rules, rule-hierarchies, the actor-modeling language, and
PPM including ports. Limited use of speech acts modeling.

— Development of conceptual models of the perceived improved situation:
Modeling the same aspects as above, but with the understanding that some
of the functionality should be computer supported. Applying the same
modeling languages as above except speech act modeling, but develop the
models in more detail. Also include ONER-modeling. Only updating the
actor models if necessary.

— Development of conceptual model of the future CIS: Decide which processes
should be supported by the CIS, and model these in more detail including

276 8. A Methodology for Conceptual Modeling

the modeling of DRL-rules and PLD’s as appropriate, in addition to further
formalizing of the other models.

As will be seen below, this is somewhat different from the guidelines below,
which indicate that one must apply modeling languages and techniques ac-
cording to the specific situation. Specific to our situation was the thorough
knowledge of the modeling languages by the users

Modeling of the Existing Information System (EIS). As a starting
point for modeling, the root-definitions [61] for all participants are established
using the CATWOE-technique. The use of this for the conference support
system development project was described in the previous chapter, and is
not repeated here.

Starting out with the CATWOE-analysis is deemed important to enable
the construction of individual models for the participants. When new persons
are included in the audience, at a later stage also their root definitions should
be established. The CATWOE-analysis gives starting points for several mod-
els. It might define actors and roles more clearly. Actors and roles are also
found during the stakeholder identification, but additional actors and roles
might be identified here. We will discuss further modeling of actors and roles
primarily as part of the process and data modeling described below because
of the close links between these. It can be a start of process models, indi-
cating the main activities, and one can also use them for identifying major
entities for an ONER-model. Most importantly, some of the high-level goals
of the different participants which can be used initially in the goal-hierarchy
are established through the CATWOE-analysis.

For the further modeling, the development group is first divided into ho-
mogeneous groups for the first modeling efforts similarly to how the division
is done in e.g. search conferences. This is contrary to what is done in e.g.
ABC and JAD [13] where the use of inhomogeneous groups is proposed from
the start. The main argument for homogeneous groups which in one extreme
include one user-participant and in the other extreme all the participants, is
to allow time for the individual to develop his own model to address prob-
lems of model monopoly. This apparent redundancy is also important for
knowledge creation [275]. In the case-study of Gjersvik [136], the local real-
ity of management was more easily transferred into an application system
because of their training in thinking in abstractions due to their generally
higher education. Problems of this kind with JAD have also been reported
in [55].

In any case each conceptual model “fuses” at least two internal realities. If
the users had been excluded from the analysis process, the system developer
would have had to bridge both his own and the reality of someone knowledge-
able in the domain. The situation is symmetrical for users. If they undertake
the development themselves, they must cope with the presumptions that is
embedded in the modeling languages and tools. If users develop also their
own languages in every case, reuse will be minimal, and it will be difficult

8.2 Conceptual Modeling in CIS Support in Organizations 277

to support model and application system quality. We suggest to have a user
and a developer to be the minimum unit of cooperation, where the developer
will be supposed to be able to use a larger part of the conceptual modeling
languages to be able to apply techniques to improve semantic and pragmatic
quality of the models. We will below assume that more than one model is
created based on the local reality of parts of the participants, thus that there
will be a need to merge different models, a process which is supposed to
include both negotiation and mutual learning.

In the conference support system development project, models were first
developed individually for actors, thus developing M (EIS); as an external-
ization of Ky, M(EILS), as an externalization of Ko, and M(EIS); as an
externalization of K3

The model-integration strategy was originally to first integrate M (EIS);
and M(EIS), into M(EILS); 2, and then integrate M(EIS)s with M(EIS); 2
into M(EIS)12

To assure organizational learning M(EIS);2 C M(EIS)', M(EIS):2 C
M(EIS)?, i.e. whereas JK and AS had interest in the complete model, OIL
had only interest in the part that was an externalization of his knowledge
regarding the practical organization of the conference.

Although education of the participants has been performed on the use of
parts of the languages that has been selected for use at this stage, different
persons should use different languages according to their ability to deal with
abstractions. Experience indicate that it might often be easier for workers to
tell their stories using the parts of the process model which are able to deal
with the instance level. These instance-level stories can then be abstracted
up to class-level ones. A data-model on the other hand represents only class-
abstractions. For others, e.g. management, which traditionally will be better
suited to deal with abstractions, a data modeling language can be more suit-
able for constructing models [136]. By using driving questions though, and
by applying the links between models actively, it should be possible for all
participants to build up models in the different languages that are used and
integrate them.

As an example of the modeling on the instance level, Fig. 8.6 indicate the
situation regarding the distribution of CFP’s seen from the point of view of
the actor JK.

This could have been based on the following story.

“The other day, I got a request from NN to send him the CFP for
the conference. The CFP had I earlier got from AS who originally
made it. After updating the address-list over people that wanted to
receive information about the conference, the CFP was sent to NN”

This model can then be generalized and extended as depicted in Fig. 8.7. The
main generalization is achieved by transferring actors into roles.

The modeling on this stage is divided into five main tasks. That does not
mean that the tasks are done sequentially, one typically will go back and forth

278 8. A Methodology for Conceptual Modeling

Source: JK, Internal actor:

ISDO OC

Address

list °
Call for
papers

Address
CFP
TL
> Distribute CFP
CFP

Fig. 8.6. PPM describing CFP-distribution at the actor-level

between different tasks. We will first describe the general guidelines, based
on both the case studies and on guidelines developed for Tempora, and then
indicate briefly how modeling was done in the conference case. The tasks are:

— Goal modeling.

— Data modeling.

— Process modeling including actor/role modeling.

— Rule modeling.

— Using techniques to help increasing the pragmatic, perceived semantic, and
social quality of the models.

Goal modeling. Objectives as perceived by the participant are described in
connection with higher level objectives e.g. overall strategies. The start of the
goal-model is based on the results from the CATWOE-analysis as illustrated
above. As goals and rules are identified (see rule-modeling below), one try to
incorporate them in the goal-model using the deontic relationships.

Both for the individual models and the integrated model, rule and goal-
modeling was used in the development of the conference system.

PPM modeling. PPM modeling by non-technical participant should be per-
formed without applying ports and not from the start distinguishing between
triggering and non-triggering flows. Thus the PPM as used here resembles
traditional DFD. The modeling of process logic should not be considered.
On the other hand, if it is necessary for the comprehension of the model,
the developer might on parts of these models use all of PPM including PLD
or rules to enable execution, code-generation, and explanation. When high
pragmatic quality has been achieved, one will continue modeling temporarily

8.2 Conceptual Modeling in CIS Support in Organizations 279

Source: JK , Top internal actor
Conference OC

P1

Create
CFP Make T
—
T CFP Finished
CFP

s1 Call for

papers

X

Current
P2

’ CFP
2 T
0 ~d » Distri-
ress
Addresses ———— bute
< s2 list E—— —» |)|cFp
- Issue CFP < Distributed
@ T CFP
i Address
old of receiver
address

Register

receplor o
of
CFP

Address

Fig. 8.7. PPM describing CFP-distribution at the role-level

discarding the extra details added either by using an appropriate filter or by
backtracking to a previous version of the model.
Guidelines:

— The process modeling do not necessarily start from a top-level process, i.e.
it is more convenient for certain groups to deal with the detailed processing
in one area. This in contrary to the idea of developing a top-level context-
diagram as described [129].

— A process corresponds to a business process, not an automated process of
the target CIS. An actor or role can be used to indicate in more detail who
supports the process.

— The scenario to the ONER-model if any such model is developed at this
stage conveys an abstraction facility for all kinds of stored data. One know
that the data is stored in some form but a further description is post-
poned. The contents of ONER-scenarios may be specified by simple access
expressions or even left out.

— Flows at a high level of decomposition are not detailed until the process
model at lower levels of decomposition are well understood.

— In the beginning, no distinction is made between control flow and data
flow. Then one concentrates on the identification of control flows.

280 8. A Methodology for Conceptual Modeling

— Filtering is useful to support the construction of port structures. This is
particularly true when the number of flows entering or leaving a port is
high.

— Each process must at least be associated with one event-action rule, al-
though this can be described informally or in matrices.

— Flow content can be specified with regard to an ONER-model, but this is
not mandatory.

— Actors and roles in the diagrams can be either external or internal to the
organization. One do not apply the traditional notion of ’external entity’
at this point, where external refers to being outside the system boundaries.

— If one are modeling speech-acts, one should try to complete the conversa-
tions, and structure the process models around the conversations.

In the conference support system devlopment project, one initially developed
process-models in the DFD-style, with the addition of indicating supporting
actors. Since the participants knew PPM-modeling well, also triggering and
terminating flows and ports were indicated. Models where made on smaller ar-
eas, trying to synthesize an overall process-model through model-integration.
No ONER-model was made at this point, thus stores and flows were not
described in much detail. Limited speech act-modeling was done separately.

ONER modeling. Concentrating on the modeling of main entity-classes and
relationship-classes, including attributes and values if necessary. Cardinality
constraints are specified if it is deemed necessary. Similarly to above, the
system developer might include additional model-details to be able to use
the techniques for improving the model-quality.

Some guidelines at this stage are:

— Strict classification of entities into specialization hierarchies should not be
enforced early in the modeling process. Therefore, one should postpone
modeling of specialization of entity classes if they do not have any par-
ticular relationship classes to any of the other central components of the
model, or they appear naturally in the discussion of roles in the organiza-
tion. Alternatively, they are hidden or developed in separate views.

— Different views of the same phenomena are allowed, since different proper-
ties may be of interest in different situations.

— Redundancy and division into submodels are often necessary to increase
pragmatic quality.

DRL modeling. Most rules are to be expressed in natural language, using a
general when-if-then-deontic-for-role/actor-consequence-else-consequence struc-
ture using informal text in the fields.

Guidelines:

— Both informal and formal rules should be explicitly represented.
— If the number of rules specifying exceptions to a rule is high, the special-
ization criterion of the entity classes involved should be reviewed.

8.2 Conceptual Modeling in CIS Support in Organizations 281

— Predicates are useful to split a composite rule into simpler rules.

— Ports together with abstraction mechanisms are useful to support the rule
formulation when the number of parts making up a rule is high.

— The I/O-matrices can be useful to support rule formulation when there is
a high number of combinations to be taken into account.

When developing the conference system, rules were only informally described
at this point.

Increase model quality. In the expansion-phase of modeling, the driving-
questions technique can be performed, often not even using a modeling tool in
the first expansion/consolidation-cycles. When improving the physical qual-
ity of the model by transferring it to a modeling tool, only syntactic invalidity
is addressed immediately by the tool.

Before switching from expansion to consolidation, checks for syntactic
incompleteness can be performed, before concentrating on comprehension.
In the conference case, comprehension techniques at this stage were inspec-
tion and filtering. This was judged as sufficient because of the comprehensive
knowledge of the modeling languages held by the participants. This would
not normally be the case and one could here be assisted by the explanation-
generation facilities to become familiar with the modeling languages. One
could also at this stage have added more details to the model, enabling exe-
cution and explanations of the model behavior to be generated. Based on the
knowledge of what needs to be added to different kinds of models to use the
different techniques, one could get an indication of the “incompleteness” of
the model with regard to execution or explanation generation based on the
area selected to be executed e.g. what is missing for the model to have neces-
sary formality as discussed in Chap. 3. Based on earlier experience one could
then get an indication of the resources needed for preparing for a prototype
or explanations.

After comprehending the different models, perceived validity and com-
pleteness can be looked into. The driving questions can be used also here,
but in a way to get an indication of that there are incompleteness, rather than
to start on a new expansion-phase immediately. One should also apply tech-
niques for consistency-checking of the models here to support this process. If
the perceived semantic quality is regarded as satisfactory on this level, one
can return to a reconciliation of the models written in the different languages
to check such things as consistent naming before trying to integrate models
based on the views of different individuals. Throughout modeling one should
also build up a thesaurus of terms which are negotiated in parallel to the
development of models [31]. As an example of a process model made in this
way, Fig. 8.8 shows one of the PPM models made based on Ks.

When integrating models made by different actors, this is one area where
model integration techniques can be useful. Totally automatic methods are
not applicable in this case, merging will necessarily involve human judgment
and negotiation. When comparing models which have no common predecessor

282 8. A Methodology for Conceptual Modeling

Source:JK
Internal actor: Conference OC
S3 Papers
Request for

further information T

T

N T Paper and
information paperinfo —p|
a Contribution T
“Program -, ",

Confirmation e ~Coordinator ",

Register
paper

Paper and
Paper to distribution info
distribute

Update
distribution
P2)

P3
PC-member
S5 info ——Pc-member T
T y
»| |Distribute |
‘ 4 papers !

-
% . Program
~.Coardinator. .
Paper and
reviewform
PC-
member

Fig. 8.8. PPM describing reception and distribution of papers based on /C»

made by persons from different parts of the organization, it is usually more
of an issue to discover overlap than differences between models. Before doing
negotiations to get a common model, the comprehension of the models made
based on the internal reality of other participants must be assisted. If all
models are made in languages that all involved participants are familiar with,
one can start by having the participants trying to explain the models made
by others. In this case it might be more cost-efficient than above to add
details to parts of the models to support comprehension techniques such as
execution and explanation generation.

If the models are developed using parts of the languages that the other
participants have not yet used themselves, language training in this area
is given in the preparation phase. Initially the other models are regarded
as fully uncomprehended, but totally valid, i.e. Vi,ji # j, M; \ Z; = M;.
Comprehension is then incrementally achieved and validity is questioned in
the process. In this way the participants can learn about other parts of the
organization and how others perceive it at the same time as they attempt
to externalize their local reality. When comprehension is achieved, model
integration of different models are attempted. This process might result in
the discovery of conflicts. Of special interest is the discovery of inconsistencies,
which might need to be reconciled.

283

8.2 Conceptual Modeling in CIS Support in Organizations

.............. - . wesboud
Jlojeuipiood wliojmalney N

o wesboud s wioy
WIOJMBINSI MaInay gs
aung 1 MaINDI
siaded 1 w%.eo
ssal
WIOJMBINSI ainquisia _cu<
pue Jaded es Sd
vd anquisip JaqWBW-0d]
0y Jaded
Aupgisuodsal
Malnay uonnquisip
ueis siaded s slaquiaw Dd
uonnquIsip 1sadaul Jo JaquinN
Jaded L I L R
I reyo "
- Em_mo_n_,. Jadeg o welboid
uonnquis||
1 ™ SIBMBIA .whmm.wu P
uonnqLisip | siomainag [¢ 1L jo
arepdn " epeq | |¢+— saded sod —| 4eqwny
slamainey —— SPPad
..... ireljs " ed 1d
. weibold — —_
\ sladed jo
Jaded JaquINN
0 eal
slaquiBl |4 ! v
-Od SI9MBIABI 10} POBN
auAul
ojunadeq | TS
_ ad

DO 80UBIBJUOD 1I0J0k [eulalu|
SV :90IN0S

Fig. 8.9. PPM describing distribution of papers based on K;

284 8. A Methodology for Conceptual Modeling

An example from the conference support system development project is
the comparison of Fig. 8.9 where the source was AS with Fig. 8.8. We can
recognize one common process (Distribute papers) and one common role
which receive papers (PC-member), whereas the additional processes in the
diagrams regard different areas. Also some common data-stores can be rec-
ognized using similar, but different names. How this process interact with
other processes differs between the models, and needs to be reconciliated.
The issue is if one should distribute papers to reviewers on a paper to paper
basis as they are received from contributors as suggested by the model of JK,
or as one process which is first run after that all papers have been received,
as suggested by the model of AS.

After integrating the models, one should look upon the amount of the
resulting statements in the combined model that was the source of each of
the participants, comparing this with the number of statements in each of the
original models. If only a small percentage of the statements in the original
model of one or more of the participants are retained in the official part of the
joint model, this might indicate a situation of model-monopoly. The resulting
model might also be perfectly legitimate of course.

After model-integration, one might go back to a phase of expansion based
on the new combined actor, which are followed by a new consolidation phase.
Alternatively, one might like to reconcile this model with another model right
away according to the chosen integration strategy.

These kinds of processes will continue until there is a common model
of the participants perception of the current situation. In a sense this has
created a new organizational reality for the development group, although it
do not at this point apply generally in the organization. This do not mean
that all differences in the models are removed. It is neither to be expected or
wanted that even after a mutual learning process, the participants look upon
the organization in an identical way. The overall assumptions that surfaced
in the CATWOQOE-analysis have not necessarily changed. The representation
of this variety is most easily done in the goal-model with its possibilities of
explicit representation of inconsistencies between views. Since the goal-model
also links to and motivates statements in other models, it will be the main
arena for negotiations.

In the conference support system development project, models based on
the knowledge of JK, AS, and OIL were created. Then, the models made
based on the knowledge of JK and AS were reconciled. At this point it was
apparent that one needed to concentrate on the paper-process only, and thus
a further reconciliation of this combined model with the model based on K3
was not performed, although it was planned. A reconciled overall process
model of the paper-process is given in Fig. 8.10.

In [207] we have also described the other modeling tasks in a similar
manner as above, but this is not included in the book for brevity.

8.2 Conceptual Modeling in CIS Support in Organizations 285

Source: ISDO
Top internal actor: Conference OC

Confirmation

Start m

P2

Paper and

T
CcFP
Announce paperinfo

conference Receive

paper

-
Addresses

Paperinfo

Address Paper J
S3| Paper

‘ Paperinfo

v

Paper Paper to
S4| distribution b distribute
Update Distribution

distribution Nondelivered
reviews

Pa N
Remind

D I—
Receive Finished

reviews review
-
Reminder
L

Received
reviews

Distribute

l Papers papers
and reviewforms

Start
distribution e
‘ Manuscript

] Send proceedings
P6 Response
on CRC

[P7
Receve ||

send CRC
en Accepted Prepare
reminder — proceedings

Reviews
T
P5

Notification of result

Select
papers
o

Start

CRCto

PC-meeting N J @ publish
Remainder

papers

Fig. 8.10. PPM describing the paper handling

Summary on Modeling Approach. Figure 8.11 can be used to summarize
the approach, giving a generic overview of the conceptual modeling within a
project. Each circle indicate a modeling effort based on the knowledge of an
individual or organizational actor. As indicated in the top left of the figure
each modeling effort can go through the modeling of several revisions and
variants of the model, and the effort follows the SPEC-cycle, ending this
modeling effort at suspension. We will look in more detail on mechanisms for
versioning support and development transactions in the end of the chapter.
Any modeling cycle in the same or previous major phase may be restarted
e.g. in case one use an iterative development strategy. It is also indicated that
a modeling effort can use a limited set of the overall conceptual framework,
and use this in different depth [176].

When integrating two (or several), models, their own modeling efforts are
in the suspension state, and the modeling of the joint model moves to prepa-
ration, setting up for merging and further modeling for a joint organizational
actor, and possibly additional language training. When whole or more usu-
ally parts of the existing models are introduced, this is the first expansion

286 8. A Methodology for Conceptual Modeling

activity, which immediately is followed by a consolidation phase, where one
try to achieve pragmatic, perceived semantic, and social quality. One can
then return to further expansion/consolidation cycles on this model. In this
model, one will typically retain statements from all the predecessor-models,
and also prune statements from all the predecessor models (indicated with
black in the figure). In addition will often new statements be added through
this modeling effort, indicated in the circles by the area below the black area.

When the modeling of the perceived existing information system is sus-
pended, one will take whole or a subset of this model and bring it over to
FIS-models. This subset can possibly be further partitioned. A similar pro-
cess takes place on the FIS and the FCIS level as on the EIS level, before a
CIS is created based on the final FCIS-model, and manual procedures based
on the FIS-model is externalized, and this is all committed to (part of) the
organization, resulting in a buffered transition of the COIS. One can also per-
ceive a situation where several CISs for different parts of the organizations
are created and committed to the different parts of the organization. In any
case, the actor models should be updated to show which parts of the new CIS
that are accessible by which users, using detailed support relationships. The
overall pre-integration strategy should be made in early project planning, but
should be updated as found appropriate during the project.

In addition to the creation of a CIS, the knowledge of the participants
should have changed as part of the project. In the conference support sys-
tem development project the developer group learned about the arrangement
of professional conferences in addition to conceptual modeling and specific
technology such as Ingres DBMS and WWW. Both AS and especially JK
learnt about these same technologies. In addition, and equally important, JK
learnt a lot about the arrangement of professional conferences, thus one do
not only have the potential for mutual learning [221] where developers learn
about the application area, and users learn about new technology, but also
for organizational learning, where different users learn from each other as
part of participating in the project.

In a maintenance project, the newly externalized CIS and manual pro-
cedures are taken as one outset, that are used together with the earlier de-
veloped EIS-model, and based on this a new model of the existing reality
as it is perceived can be created. A similar process of sub-setting, splitting
and merging as for the development project can be conceived, but we have
not indicated this in the figure. We have included existing COISIRs as being
taken into account on FIS and FCIS-modeling though. When the new version
of the CIS is finally committed, this is a new buffered transition of the COIS.

8.3 Management of Change

We end the book with an overview of some mechanisms for configuration
management of conceptual models

8.3 Management of Change 287

Model-type G L S

[§

EIsS

FIsS

FCIs

Cls Commit

Fig. 8.11. Conceptual modeling in a set of integrated projects

This section presents necessary functionality to support the change pro-
cess during information system development. This includes a framework for
version and configuration management which makes it possible to model
the various product structures involved in information system modeling, and
which permits inconsistencies in the information system models. It also in-
cludes augmentation of the framework to support development transactions
which allows asynchronous modes of working and coordination within the
development team. Finally, it includes further augmentation of the frame-
work for supporting synchronization of the work performed by the individual
members of the development team.

8.3.1 Version and Configuration Management

Version and configuration management keeps track of versions of system com-
ponents developed by several developers potentially working in a geographi-

288 8. A Methodology for Conceptual Modeling

cally distributed development environment. A version of a system is an im-
mutable, identifiable edition of a system. A system is composed of a number
of components. A component may either be a hierarchical composition of
other (sub-)components or a flat structure with no hierarchical relationships
among the (sub-)components. A version of a system is a composition of ver-
sions of system components. The following issues are discussed: Definition of
development object versions, definition of component structure, naming of
components, and granularity of versioned components.

Definition of Development Object Versions. Each development object
may exist in a number of versions. There are two classes of versions: Revisions
are versions that are meant to replace previous versions, and variants are
versions that are meant to coexist with previous versions. The difference
between two succeeding versions can be characterized by a set of elementary
(atomic) changes. We take the assumption that each version is developed
based on a unique existing version. A version of a development object is
named as follows: development-object-name revision-number[variant-name].
Revisions are given a two digit revision identifier in addition to their name.
The two digits make it possible to distinguish between major and minor
version changes. Variants are given a variant specific name in addition to
development object name and revision identifier.

S 1.0[BB]

S 1.1[BB,CC]
S1.2 @ S 1.2[BB,CC]

Fig. 8.12. Version graph for system S

Version graphs can be used to graphically depict the relationships between
versions. Figure 8.12, depicts a version graph for a generic system S, which
exist in ten different versions. The initial version is S 1.0. Two variants, called
S 1.0[AA] and S 1.0[BB] respectively, have been developed based on S 1.0.
Further, version S 1.1 has been developed as a revision of S 1.0. Detailed
information on creation time is also associated with each version.

8.3 Management of Change 289

Definition of Component Structure. A system comprises a number of
system components. The components are either a hierarchical composition
of other (sub-)components or a flat structure with no inherent hierarchy. An
example of a hierarchical component structure is a set of Data Flow Diagrams
which are hierarchically ordered by way of decomposition relationships from
processes in one model to other (sub-)models. An example of a flat compo-
nent structure is an ER model where there are no hierarchical relationships
among the different components of the diagram. The two types of component
structures require different treatment with respect to versioning.

@

e

L= JL-] L1 L]0]

!J/\!*K\ !L/\!\M|

Fig. 8.13. General hierarchy

Hierarchical component structures. The hierarchical models are characterized
by hierarchical decomposition. Decomposition of a component is a refinement
of the component in terms of a more detailed structure of lower level, i.e.
more detailed, components. Hence, every system component is either atomic
or compound. An atomic component has not been further decomposed, while
a compound component has been further decomposed into a set of system
components. Every system component exists in a number of versions. Thus,
a specific version of a non atomic component is composed of specific versions
of its subordinate components. In a standard hierarchy a modification in a
leaf node component, which will create a new version of that component,
would result in a ripple of version changes all the way to the top of the
hierarchy. Consider the hierarchy depicted in Fig. 8.13. A new version of
system component J will result in a new version of E, which in turn will
result in a new version of B, and finally a new version of A. This ripple of
version changes is in many cases an undesirable property of the hierarchy
which leads to difficulties in handling temporary inconsistencies. A number
of small modifications in components deep down in the hierarchy will result in
a large number of version changes for components higher up in the hierarchy.
Thus, automatic creation of a new version of a component whenever there is
a version change in a subordinate component is undesirable. We propose to
let system components be related to their decompositions by a solved by
relationship to avoid this cascading of changes of versions.

290 8. A Methodology for Conceptual Modeling

solved by
B

Lk

solved by
D

Fig. 8.14. Component structure graph

If we use the solved by mechanism it is possible to delay modifications to
a component (i.e. new versions,) to take effect on components higher up in
the hierarchy until they are explicitly included. Thus, new versions of com-
ponents are created explicitly. Once a new version of a component becomes
available, it is not mandatory to include it in any superior component. The
inclusion of any new versions of subordinate components is done explicitly.
Hence, inconsistencies among the development objects are tolerated. We pro-
pose the component structure graphs to represent system structure, where
each component may exist in a number of versions, and the solved by rela-
tion represent the relation between a system component and its subordinate
components. Figure 8.14 depicts the general hierarchy from Fig. 8.13 as a
component structure graph.

There are four possible operations on hierarchical components: New hier-
archical, modify hierarchical, remove hierarchical, and merge hierarchical.

— New hierarchical defines a new hierarchical component from scratch. The
new hierarchical operation defines a placeholder in a new version graph for
the new hierarchical system component. The default initial version is 1.0.

— Modify hierarchical defines a new version of a hierarchical component. The
old version of the hierarchical component is left unchanged. The new ver-
sion may be either a revision or a variant of the previous version.

8.3 Management of Change 291

— Remove hierarchical deletes the last version of a hierarchical component.
Versions of a hierarchical component within a revision chain cannot be
removed. The remove hierarchical operation does not affect any other ver-
sions of the hierarchical component.

— Merge hierarchical merges two hierarchical components into a single com-
ponent. The merge hierarchical operation takes as input two different de-
velopment versions of a hierarchical component belonging to two different
development transactions. The operation creates a new hierarchical com-
ponent which contains the result of the merging operation. The merging
operation may be entirely manual or semi-automatic.

When hierarchical components are merged, names of the sub-components
existing in the different hierarchical components are compared. Names of
sub-components in the hierarchical components that are being compared,
the input components, are left unchanged. In the case of a conflict of names
among the input components in the merging process, the sub-component in
question will have to change its name in the merged component. Name con-
flicts will in general have to be resolved manually. We will look into merging
mechanisms in more detail below.

Flat component structures. Flat models, e.g., traditional Entity Relationship
diagrams, have no inherent hierarchical structure. Components of varying sig-
nificance and multiple levels of detail are logically placed on the same level
of abstraction, i.e. in the same diagram. There is usually no decomposition
mechanism. Notable exceptions exist, such as Tempora ERT. However, this
does not mean that decomposition in the sense used for hierarchical models
exists in flat models. Generally, every system component that is of the flat
model type is atomic. Every system component of the flat type will neverthe-
less be subject to development and subsequent modifications and thus exist
in a number of versions. Although system components of the flat type are
considered atomic from a system structure perspective they are not atomic
from a systems development perspective. E.g., a process in a Data Flow di-
agram will only reference certain entities, attributes, and relationships in an
Entity Relationship diagram. A subdivision of tasks among several developers
based on the hierarchies in for example Data Flow diagrams, will thus have
as a consequence that all of the tasks reference, and may want to modify, the
same flat component, Consequently, there is a need for developers to be able
to reference, enhance, and modify only parts of a flat model, although this
flat model is common to a large number of developers.

We propose to use scenarios to impose a structure on top of flat com-
ponents. Different application projects will develop different scenarios based
on differences in application needs and perception of real world phenomena.
Hence, the scenarios constitute a classification of real world features according
to the needs and perceptions of the applications. The scenarios may therefore
be used to facilitate co-existence and integration of discourse systems devel-
oped by different application projects. The union of the scenarios constitute

292 8. A Methodology for Conceptual Modeling

the complete conceptual model. More generally, one can use the notion of
conceptual views applied to all flat models. In our context the definition of a
conceptual view becomes:

A conceptual view is a logically connected subset of a flat model.

Conceptual views may overlap, such that the same development compo-
nent may exist in several conceptual views. There are no live links between
components occurring in several conceptual views, e.g., updates are not auto-
matically propagated among conceptual views. Conceptual views may exist
in several versions. As mentioned above, one of the prime purposes of intro-
ducing the conceptual view is to facilitate co-existence of discourse systems.
This means that conceptual views are related, and thus form a structure. A
conceptual view can be built by selecting components from an existing con-
ceptual view. When a conceptual view is built by selecting components from
an existing conceptual view, the relationship, built from, between the existing
and the new conceptual view is recorded. The default initial version of the
new conceptual view thus created is 1.0. The built from relationship may be
applied on all conceptual views, thus creating hierarchies of conceptual views
built from conceptual views built from conceptual views, etc.. There are four
possible operations on a conceptual view: New conceptual view, modify con-
ceptual view, remove conceptual view, and merge conceptual view.

— New conceptual view defines a new conceptual view from scratch. The new
conceptual view operation defines a placeholder in a new version graph for
the new conceptual view. When a conceptual view is built from scratch,
no indication of origin is given. The default initial version of a conceptual
view is 1.0.

— Modify conceptual view defines a new version of a conceptual view. The
old version of the conceptual view is left unchanged. The new version may
be either a revision or a variant of the previous version. The successions
of versions are handled by the version graphs introduced in the previous
section. Variants of a conceptual view would be used to capture situations
where it is desirable that different versions of the same conceptual view co-
exist over time. For example, an Entity Relationship diagram that exists in
two versions that are variant related, to serve as the basis for two variant
related data flow diagrams. An alternative way of realizing parallel versions
is to build a new conceptual view based on an existing version. This would
establish the new conceptual view as built from related to the original
conceptual view, and not as a variant to its origin. The differences are
few. But, rather than restricting the use of the variant graphs applied
to conceptual views to simple revision chains, we have decided to keep
the redundancy and leave the choice between the two alternatives to the
preferences of user.

— Remove conceptual view deletes the last version of a conceptual view. Ver-
sions of conceptual views within a revision chain cannot be removed. The

8.3 Management of Change 293

remove conceptual view operation does not affect any other conceptual
views or any other versions of the conceptual view.

— Merge conceptual view merges several conceptual views into one single con-
ceptual view. The merge conceptual view operation retains the old concep-
tual views, and creates a new conceptual view which contains the result
of the merging operation. The merging operation may be manual or semi-
automatic.

When conceptual views are merged, names of phenomena existing in the
different conceptual views are compared. In general, name conflicts will have
to be resolved manually.

In the general case, manual intervention to negotiate the inconsistencies
that have developed among the input conceptual views is required. It is gen-
erally not possible to automatically determine any optimum conceptual view
to which the merged conceptual view by default would be related. The defini-
tion of optimum is subject to personal interpretation and the intention of the
merge operation rather than the origin and history of the input conceptual
views.

It may be the case that the result of the merge operation is such a major
restructuring of either of the input conceptual views, that the feeling of the
teams is that it would be counter-productive to continue to use the input
conceptual views as the basis for further development. This may be particu-
larly so knowing that a new merge operation inevitably is going to take place
at some future point in time. In this case, an alternative solution is to build
two new conceptual views based on the reconciled version, and use these new
conceptual views as the basis for further work.

Global Name Uniqueness. It must be possible to refer to all development
objects in an information system by a unique name. We will present a nam-
ing schema for development objects that provide and maintain global name
uniqueness. There are two alternatives for obtaining global name uniqueness:

— A flat namespace where the name uniquely identifies the development ob-
ject no matter where it is being used.

— A hierarchical namespace where development objects names are qualified
with the names of hierarchically superior development objects.

The simplest solution comprises a flat namespace where a development
object’s name uniquely identifies the development object independently of
where it is used. For small systems this is an ideal solution. Each develop-
ment object has its own name distinct from any other development object.
Referring to a development object by name is simple and without ambigu-
ity. However, as the number of development objects grows a flat namespace
will quickly become impossible to manage. A solution where development
objects’ names are qualified with the names of hierarchically superior devel-
opment objects remedies the problem of namespaces growing out of bounds.
A hierarchical qualification system allows a flat namespace of moderate size

294 8. A Methodology for Conceptual Modeling

to be seen as a hierarchy. We propose to have a hierarchy of project libraries.
Each development object should be uniquely named within each library. De-
velopment objects within a development object should be uniquely named
within that development object. Global uniqueness is accordingly ensured
through qualification of a development object’s name with the name of the
superior development object.

Hierarchical models. In the case of hierarchical models, the name uniqueness
requirement imply that each development object will have to be uniquely
named within each development object for each library. Names of components
are qualified by the name of the ancestor development objects. Thus, in the
case of e.g., data flow diagrams, the name of each component in a diagram
will have to be unique. Each process, data store, data flow, and external
entity is uniquely identified by its name within a diagram.

Flat models. Flat specification models inherently have a global name space.
The conceptual view concept superimposes a structure on the models. The
structure is motivated purely by pragmatic considerations within the devel-
opment, organization, e.g., the split of tasks among developers. The name
uniqueness requirement applied to conceptual views imply that components’
names will have to be unique within a conceptual view and not within the
complete conceptual model for a domain. Names in different conceptual views
are not necessarily unique. Names of components are qualified by conceptual
view name. E.g., in the case of a conceptual view defined over an Entity
Relationship diagram, each component in the conceptual view will have to
be unique. Each entity, relation, and attribute, is uniquely identified by its
name within the conceptual view.

Granularity of Versioned Components. To be able to keep concurrent
versions of system components, we must determine a suitable level of gran-
ularity of atomic system components. The granularity will have to be deter-
mined by the grouping of selected basic modeling constructs into appropriate
atomic components. The atomic system components will subsequently be
composed into structural components which will form a hierarchy of system
components. The decision on granularity will reflect a compromise between
the high complexity and high costs that are associated with a fine grained so-
lution, and the relative loss of control and flexibility that come with a coarse
grained solution.

Hierarchical models. As a representative of hierarchical models, we consider
the modeling constructs of Data Flow diagrams. The Data Flow diagrams
comprise a natural hierarchy through the decomposition of processes. Re-
vision of a process happens through a revision of its decomposition. Other
components of Data Flow diagrams are data stores, data flows and external
entities. Those components are not refined through hierarchical decomposi-
tion as is the case for processes. From a version handling perspective, refining
a data store or a data flow is equivalent to deleting the old data store or data

8.3 Management of Change 295

flow and inserting a new. Thus, the process component of a Data Flow dia-
gram is the lowest level development object that will exist in several versions.

Flat models. Regarding flat models, e.g., Entity Relationship diagrams, the
feasibility of keeping versions of entities, relationships, and attributes is in
our opinion questionable. The feasibility of keeping versions of conceptual
views, i.e. entire diagrams of some manageable size, is much more obvious.

Selecting a Version. A specific version of a development object may be
selected and accessed by browsing of the component graph in combination
with simultaneous browsing of the version graph.

— Having chosen one specific development object version in the component
structure graph it is possible to switch to the corresponding version graph
to see the complete version picture for that development object. The last
version worked with will be the default.

— Having chosen one specific version of the development object in the version
graph it is possible to switch to the corresponding component structure
graph to display its subordinate components. If this is an atomic component
one may switch to browsing of its content.

— Having chosen one specific version of a development object in the version
graph it is possible to start the development of a new version of the de-
velopment object based on the selected version. The new version can be
related as serial or parallel to its origin.

8.3.2 Way of Working

This section briefly describes a development conceptual view which serves as
an illustration of the use of the concepts and functionality presented in the
next two sections. The section describes the application of this in PPP.

Selecting a version of a development object. Selecting version 1.2 of Address
register, is done by marking it in the version graph, and choosing browsing
or check-out from a pop-up menu. Browsing would result in the creation of
a read-only window displaying the contents of the development object using
the appropriate tool or editor. Check-out would result in the creation of a
placeholder in the version graph. The placeholder will have to be placed either
as a revision or as a variant to the version that was checked out.

Development transactions. When a version of a development object is checked
out for further development, the version of the object is copied to a private
workspace and may be modified by the developer using a set of appropriate
tools. Elapsed time before check-in may be in the order of days and weeks.
When the modifications are completed the object is checked in to the speci-
fication base. The task of developing a new version of a development object
, i.e. from check-out till check-in, is termed a development transaction. As
development transactions may be arbitrarily long lived, facilities for sharing

296 8. A Methodology for Conceptual Modeling

Check-out Contract

Object id: Address register 1.2
Status: Checked out

Transaction id: Trans-1
Date: 06.01.92:09:45:20
Publish: Yes
Subscribe: None

Transaction id: Trans—2
Date: 08.01.92:12:05:10
Publish: No
Subscribe: (Object id = Address register 1.2,
Transaction id = Trans-1)

Fig. 8.15. Check-out contract for Address register 1.3

of specifications between transactions are provided. Several transactions are
permitted to concurrently access and check-out the same version of a develop-
ment object. Thus several copies of the same version may be in the process of
being modified simultaneously by different transactions. Modifications made
to the development object by the different transactions are by default consid-
ered private and kept separate until check-in time. Synchronization among
transactions is provided by the publish/subscribe mechanism that allows one
transaction to subscribe to local revisions of development objects developed
and published by other transactions. Check-in time is determined by the de-
veloper responsible for the development object. Suppose that two different de-
velopers were interested in modifying Address register 1.2 with the intention
of creating a new version. Both developers would check out the development
object in separate development transactions, say Trans-1 and Trans-2. For
each transaction initiated a transaction log is created. The transaction log is
owned by a transaction, and contains information on the development objects
currently checked out by the transaction. When the first transaction checks
out the development object, a placeholder for the new version is created and
a check-out contract for the new version of the object (the placeholder) is
created. The check-out contract will be updated with information on date

8.3 Management of Change 297

and time of check-out, transaction identifier, whether local revisions created
during the transaction are to be published or not, and subscriptions to local
revisions of development objects created by other transactions. Let us assume
that the first transaction checking out version 1.2 of Address register places
the new placeholder as a revision of version 1.2. The placeholder will thus
be named Address register 1.3. The check-out contract for Address register
1.3, after transactions Trans-1 and Trans-2 have checked out the object is
depicted in Fig. 8.15.

Check-in of a new version of a development object. At check-in time the de-
velopment object is returned to the specification database with the purpose
of updating the database with a new version of the development object. If
there are several candidates for the new version, i.e. if the development object
was checked out by several transactions and these transactions have modified
the object, the candidate versions must be merged. All developers having a
copy of the development object are notified, and a suitable time to attempt
the merging is negotiated. Some developers may need an extra day or an
extra week before being ready to merge with the others. In the end, the time
of merging will have to be determined by the developer formally responsible
for the development object. When the merging of the candidate versions is
attempted, conflicts among the candidate versions may be detected, and a co-
operative session among the developers of the candidate versions will have to
be initiated. The purpose of the cooperative session is to negotiate a new ver-
sion of the development object. The negotiations are based on the conflicting
candidates. The session may be synchronous or asynchronous. Tool support
is provided through multi-user editing capabilities. In the synchronous case
all candidate versions are available to the involved parties during the session
through a multi window interface. A developer may comment all propos-
als. Various candidates may be compared, both on a non-executable (textual
or diagrammatic) and an executable (by simulation or execution) basis. Cut
and paste among windows to achieve a reconciled version is supported. In the
asynchronous case one have to rely on written communication in the form
of comments added, and cut and paste versions, to convey opinions among
the developers involved in the negotiation process. A successful negotiation
session results in an agreement on one reconciled version that will be the next
version of the development object in question. This version will be stored in
the specification database, and the development transaction is terminated.
Suppose that development transaction Trans-1 is ready to check-in the devel-
opment object at Date = 13.01.92 : 15:05:50. Additionally we assume that the
developer responsible for transaction Trans-1 is also responsible for Address
register. This means that in the end it is the owner of Trans-1 who deter-
mines the time of check-in. When Trans-1 issues the request for check-in, the
check-out contract for the development object is inspected. All transactions
that is registered as having checked out the development object is notified
of the request for check-in. Suppose that transaction Trans-2 requests a one

298 8. A Methodology for Conceptual Modeling

week postponement before merging, the owner of Trans-1, being the devel-
oper responsible for the development object, is at liberty to grant or reject
the request. When merging potentially is needed, i.e. when several candidates
for the next version of the development object exists, there are two possible
outcomes:

— The developer responsible for the object picks one of the candidates. The
chosen candidate will be checked back into the repository as the next ver-
sion of the development object.

— The developer responsible decides to merge the candidates. There are two
ways of attempting to merge the candidates:

— Try an automatic merging of the candidates. If overlap is detected, ini-
tiate a cooperative session to negotiate a new version.

— Initiate a cooperative session to negotiate a new version directly without
trying to merge automatically first.

When the merging process is finished, the result is checked back into the
specification database as Address register 1.3, i.e. filling the placeholder for
this version of the development object.

8.4 Use of Viewspec in Modeling

From the models, one can generate a set of viewspecs which we would like to
be able to work with simultaneously, i.e., we want to allow multiple viewspecs
to co-exist. To use multiple viewspecs effectively in the modeling process
requires that:

— Management of multiple viewspecs is supported.

— It is possible to go back and forth between models at different abstraction
levels, i.e., flexible ways to go back and forth between full models and
associated viewspecs.

Management of multiple viewspecs. To allow multiple viewspecs and multiple
viewspecs to co-exist, we distinguish between three different relations in the
versioning graph: filter, variant and context relations.

A filter relation depicts the relationship between a viewspec and its orig-
inating model. Two models are filter related if one model is generated from
the other model by a filter. Thus, a filter relation depicts relationship be-
tween a full model and a viewspec or between two viewspecs. Moreover, a
model can be filter related to several viewspecs, that is, several viewspecs are
generated from the same model. Figure 8.16 shows a versioning graph that
depicts a situation where a transaction has checked out a model S1.7 and a
set of viewspecs have been generated from it. A model is uniquely identified
by name S1.1{7}{a).A, where {7} indicates it belongs to transaction 7, (a)
indicates that it is a viewspec of type a and A is the revision number local
to the transaction.

8.4 Use of Viewspec in Modeling 299

S1.0

revision

revision

Check-in
S1.2 ezt e e emeean

Fig. 8.16. Viewspecs are filter related to their originating models

Figures 8.17a and b shows a version graphs for a data and process model,
respectively.

We make a distinction between updates of a viewspec that concern the
contents, i.e., change of semantics, and updates that concern the represen-
tation of a viewspec without changing the semantics, e.g., restructuring of
diagrams. In a similar manner as for full models, it is useful to talk about
revisions and variants of viewspecs. An updated viewspec is a revision of its
originating viewspec, whereas a viewspec is a variant of another viewspec if
it is expressed using a different language or its layout is modified but in both
cases the semantics of the models remain unchanged. We postpone the dis-
cussion of updates of viewspecs until the next section. A variant of a viewspec
is denoted by a variant relation. Accordingly, we are allowed to keep different
variants of the layout of a viewspec. It is up to the analyst to decide how
many layout versions of a viewspec she actually wants to keep. If we want
to include the intermediate viewspec that is the viewspec which is the result
of the filter before modification of layout, we indicate this in the versioning
graph by relating the viewspec and the restructured viewspec by a variant re-
lation (Figure 8.18). The L indicates that the version is the result of changing
the layout of the viewspec without changing its semantics.

When working with a combined language like PPP, it is useful to be
able to have an easy access to related viewspecs expressed using a different
language. This is provided by introducing the context relation. A viewspec V1
is context related to another viewspec V2 if V2 describes related aspects of
V1, i.e., V2 elaborates the context modeled in V1. The viewspecs are closely

300 8. A Methodology for Conceptual Modeling

filter
G

filter

Check—out
a)

b)

Fig. 8.17. a) A data model and associated viewspecs b) a process model and
associated viewspecs

related and the developer may go back and forth between the viewspecs. To
support this way of working we therefore relate the viewspecs by a context
relation in the versioning graph (Figure 8.19). P1.0{1}(1).1 corresponds to
the viewspec depicted in the version graph in Fig. 8.17a.

Back and forth between models at different abstraction levels. It should not
only be possible to allow multiple viewspecs to co-exist but it should also be
possible to go back and forth between models at different abstraction levels in
a flexible manner. This implies that it should be possible to go back and forth
between a full model and its associated viewspecs as well as different versions
of such models. To keep track of all the models we have already introduced
some relations for depicting relationships between models. In addition, we
introduce the notion of local workspaces. The purpose of local workspaces is
to hide irrelevant models, provide easy access to relevant models and provide
a more comprehensible naming schema for relevant models. Practical usage
of the viewspecs have shown that the number of viewspecs associated with a
large model may become large and its difficult to keep track of all of them.
Although the definition of transaction can be considered as a local
workspace, the introduction of a flexible filtering mechanism calls for a finer
granularity of workspaces than is provided by development transactions.
Thus, we suggest that a transaction can be divided into a number of lo-
cal workspaces. These are defined by the developer according to her needs.
Each local viewspec may consist of a set of full models and a set of asso-
ciated viewspecs, i.e., a subset of a development transaction. Figure 8.20

8.4 Use of Viewspec in Modeling 301

Check—out

variant

Fig. 8.18. Viewspecs are variant related to their originating models

C|] context
o) J—

A'P1.0{1)<1.1> %

variant s

Fig. 8.19. Viewspecs are context related to their originating models

shows an example of how local workspaces can be denoted in a versioning
graph. The selection of viewspecs to participate in a particular workspace is
a user-decision.

The advantages of providing the user with the ability to define her own
workspaces are the following:

— Easy to keep an overview of relevant models for the task to be undertaken
at any time during the development process. The relevant viewspecs can
be shown by a graphical facility which provides overview pictures of global
and local workspaces. Such a facility would utilize the information already
provided in the versioning system. The use of local workspaces may resolve
the conflict of providing a sensible context for carrying out the actual work.
Thus, the concept of complexity reduction also applies to versioning.

— Easy to go back and forth between different abstraction levels. Advanced
user interface packages facilitate such a working mode by allowing several

302 8. A Methodology for Conceptual Modeling

- \
local workspace | context Pl o 1 \
R e 3 .
filter { } R
FTILL /
filter /
- -

revision

revision

Fig. 8.20. Local workspaces

windows to be displayed at the same time, cut and paste between windows,
etc.

— The introduction of local workspaces allows us to have local name spaces
for viewspecs. A more flexible naming schema is necessary. One should
not be disturbed by transaction name and full model name. The name of
a version of a viewspec must be unique within the local workspace but
different workspaces may contain common names. A component of a local
workspace can be uniquely identified by prefixing the component name
by the unique name of the checked-out originating model and the local
workspace name. Thus, the system should work with surrogates internally
which uniquely identify models. However, the developer only deals with
simpler name within each local workspace.

Some of these ideas can also be extended to encompass versioning of full
models. However, we will not pursue this here.

8.4.1 Inserting Modeling Statements

This section details how viewspecs can be used as a basis for further modeling.

Why Allow Updates of Viewspecs?. By allowing updates on viewspecs
we may use them as a basis for entering new statements into models as well
as for presentation purposes. The rationale behind allowing viewspecs to be
updated is:

— Large and complex models are difficult to update. Rather than entering new
information to a large and complex model, the developer can concentrate

8.4 Use of Viewspec in Modeling 303

on relevant details by updating appropriate viewspecs generated from a
full model. The developer is not confused by irrelevant details and thus,
modifying a smaller and less complex model requires less effort.

— FEzxplore alternatives. In some situations, the actors envisage several alter-
native solutions which may be interesting and important to pursue. The use
of viewspecs allows different solutions to be modeled and it also provides
support in managing the resulting models.

— Conflicting views of reality are useful to model as intermediate results. Dif-
ferent parts of a model may be based on slightly different and inconsistent
views of the reality. To resolve potential conflicts among these views, it may
be useful to model these as intermediate results. In some way, the final in-
formation system must accommodate a compromise of all these views.

— Generate appropriate viewspecs for presentation. We have defined a set of
filters. The user may however want to generate a viewspec for which no
filter is defined, e.g., the resulting viewspec may still contain irrelevant
information which must be suppressed manually.

The importance of allowing viewpoints to be updated has also been pointed
out by others, e.g., Easterbrook [100].

Management of Updated Viewspecs. We have mentioned before that
revisions of full models has a counterpart in updated viewspecs. Figure 8.21
shows a version graph for a full model with associated viewspecs. Viewspecs
are updated and this is depicted by a revision relation. It is the contents of
the viewspec that are changed, e.g., by adding or deleting information. Each
update of a viewspec results in a new revision of the viewspec.

The Problem of Inconsistency. Allowing viewspecs to be updated im-
plies that they can be modified directly by the developer. It is up to the
developer to manipulate the viewspec and therefore, no control is to be pro-
vided by the system beyond consistency checking which is also performed
for full models. However, by allowing updates on viewspecs another type of
inconsistency problem also arises. Updating a viewspec may imply that the
updated viewspec and the full model from which the viewspec originates, be-
come inconsistent. The inconsistency may occur for several reasons. Updated
viewspecs may have (relative to the originating model from which they were
generated):

— New components.
— Updated components (slightly modified components).
— Deleted components.

Conflicts may occur such as conflicting names, conflicting types and conflict-
ing use of domain concepts in different models. Also conflicting views of the
reality can be explicitly modeled.

304 8. A Methodology for Conceptual Modeling

. revision
revision
Check-ou
SLL Jrmeree - revision revision
‘ revision | revision
revision HE Y
e ! revision
Y revision ‘E E

Check-in
(3 W -
revision

Fig. 8.21. Revisions of models

b

Alternative Ways of Dealing with Inconsistency. In spite of the prob-
lems of inconsistencies, we have chosen to allow updates on viewspecs because
we want the viewspecs to be used ‘actively’ during the development process. It
is crucial that the developer can enter new model details into viewspecs. The
developers can thus concentrate on relevant issues without being disturbed
by irrelevant details which is essential when dealing with large and complex
models. The price we have to pay for allowing updates of viewspecs is to
provide support to assist the developer in dealing with inconsistent models.
We envisage at least three solutions:

1. Allow updates of viewspecs but insist on that inconsistencies should be
resolved before any other action can be taken. This could be done by
creating a skeleton, i.e., a placeholder, for a new revision of the full model
as soon as a viewspec is updated (Figure 8.22). The conflicts between the
viewspecs and the originating model must then be resolved before the
development can proceed.

2. Allow updates of viewspecs and allow for inconsistencies to exist but
provide extensive support for the eventual model merging process (Fig-
ure 8.23).

3. Allow updates of viewspecs and allow for inconsistencies to exist but
leave the model merging process to the developer.

The first alternative corresponds to a rigid development approach, where
it would not be allowed to have several updated viewspecs to co-exist. This
contradicts our requirement to a flexible approach. If we go for the third

8.4 Use of Viewspec in Modeling 305

S1.0
revision
Check-out filter ' '
SLL) - revision
S1.1{1)<2>.
revision
" Resolve the conflict

Check-in =
S1.2 P,

Fig. 8.22. Resolving the conflict immediately after a viewspec is updated

approach we only need to provide versioning of updated viewspecs and leave
the process of integrating the new versions into the full model to the devel-
oper. This does not seem to be the way to go due to the fact that providing
this flexibility may do more harm than good in the development process. In
particular, this alternative may become quite time-consuming when many
viewspecs are updated and used as a basis for updating a full model. We
have to come up with facilities to support the process of going from one full
model to another one by taking into account updated versions of viewspecs.
Thus, the second solution is what we will go for in the remainder of this
chapter. The next section outlines support for the process of building full
models based on a set of updated viewspecs.

8.4.2 Inclusion of Changes

This section details how changes that are made to one or more viewspecs can
be used as a basis for building a revised version of a full model. To carry out
the process of including the changes contained in the viewspecs into the full
model, is not straightforward. During the modeling process several viewspecs
may be updated and several versions of each viewspec may co-exist. Thus, an
important step in a modeling process based on viewspecs is to provide support
for the process of solving eventual conflicts between updated viewspecs and
the originating model. We distinguish between two major ways of including
changes:

306 8. A Methodology for Conceptual Modeling

i

revision

S1.0

e

evision

revision

Check-out
S1.1)eeeeeeeeeeees e

revision S1.1{1}<2>.1)

revision
»” pe-TTTT=== Il ~
v BUILDING SUPPORT =~ <
~ ~

e ~

- evision
TTe. o e ~
Check-in L S S1.1{1}<2>.
S1.2 Jorlnnmaneenes S1.1{1}p Pied \ A
N

evision

&

Y revision

e

filter revision

| revision

§
4

Y revision

L

Fig. 8.23. Building a new revision based on updated viewspecs

— Change propagation.
— Model integration.

Controlled Change Propagation. The simplest way of including changes
on updated viewspecs into the respective full models is to propagate the
changes one by one. Changes to a model are not by default propagated au-
tomatically. For large models the number of interconnections is usually very
high and the consequences of the changes may not be predictable, e.g., an
update of an entity class in the ONER-model may cause several changes to
DRL rules that contain ONER, expressions that refer to the entity class. To
propagate changes in a controlled manner we advocate an approach based on
a mixture of automated support and manual intervention. In general, changes
to a viewspec V are only considered for propagation if the viewspec is selected
by the developer. For example, if a viewspec is updated and only used for
presentation purposes, we do not consider to propagate the changes.

An updated viewspec may contain modified objects that should also be
propagated to models other than the originating model. By using the links
that define the interrelationships between the languages, a list of affected ob-
jects in associated models can be provided. Thus, search facilities that utilize
intra-language, inter-language and inter-level links are valuable support when
changing/modifying a model.

Warnings could also be provided to inform the developer that other asso-
ciated concepts are affected and must be updated in order to maintain con-
sistency across model boundaries. Then the developer may choose whether

8.4 Use of Viewspec in Modeling 307

she wants to propagate a change or not. The changes are carried out one by
one and some may also be propagated automatically.

In some cases, automatic propagation of changes may be appropriate but
it should be user-driven and only performed if one can assure that it has no
undesired side-effects. That is some on-off mechanism should be provided.
This can be illustrated with a simple example. Let us say that we want to
change the name of an entity class from adr to address. It is obvious that
before the change is propagated the developer should be provided a warning
if address already exists in the models. If address does not exist the change can
be propagated to all models, going across model boundaries using appropriate
links.

Model Integration. The process of putting a new revision of a full model
together based on viewspecs will be referred to as the model integration pro-
cess. The result of the model integration process is a consistent version of
the previous full model including the changes in the selected viewspecs.

A thorough analysis of model integration is beyond the scope of this
work. We limit ourself to describe major steps of the integration process and
to outline some means to support such a process. The support itself will be
a number of very specialized tasks as outlined in Chap. 7.

The input to the model integration process. Figure 8.24 shows how models
that form the basis for a model integration process are depicted in a versioning
graph. The input to the integration process is related with merge relations
between the relevant models. Possible models are:

— A previous version of the full model.

— One or more update viewspecs.

— One or more viewspecs which are approximations of the corresponding
originating model.

Additional information may be provided about each updated viewspec, e.g.,
type and what changes have been made since it was created. This information
is recorded during the filtering and updating processes. The versioning facility
provides the information together with the names of the models. The models
are then retrieved from the model repository.

Only viewspecs which contain approximations of the originating model
and updated viewspecs should be considered for integration. Other viewspecs
are not relevant because they are projections of the originating model and
thus, the viewspec’s information is already included in the full model. How-
ever, not all updated viewspecs are considered for integration. It is a user
decision to select what viewspecs that should be considered for integration.
For example, if a viewspec is updated and only used for presentation purposes,
we do not consider to propagate the changes. We may also have situations
where updated viewspecs are used to explore alternative solutions/conflicting
viewpoints. Only the set of viewspecs that represent the ‘consensus’ solution

308 8. A Methodology for Conceptual Modeling

At

vision

s1.0 filter

vision

Titer eV|5|on
¢ reV|S|0n
filter reV|S|on

revision

Check—out
S1.1)eeeeeeeeee-

vision

!re
revision revision Yrewsmn
! revision
Meroq merge
Check-in 5 Yo S1.1{1}<2>.
[S3 I 2 V- SPECIFICATION
INTEGRATION
merge

Fig. 8.24. The merge relations

are considered for the integration process. In this case, we envisage that ad-
ditional facilities are provided to support the process of arriving at a feasibly
agreed solution.

The viewspecs used as a basis for the model integration may contain
(relatively to the full model from which they originate): new components,
updated components, deleted components, and/or redundant components. If
an update of a viewspec only results in redundant components the updated
viewspec does not need to be considered any more in the integration process.
If components are deleted from the viewspec, corresponding components in
the full model must be considered for deletion. If new components are added
and they do not exist in the model, they must be considered for insertion in
the new version of the model. Updated components implies that the corre-
sponding components in the full model must be considered for modification.
The detailed model integration process was discussed in Chapter 7 and is not
repeated here.

8.5 Chapter Summary

The methodology outlined in this chapter can be given the following classifi-
cation when using the framework presented in Sect. 8.1:

— Weltanschauung: Constructivistic. This view has been important for the
specification of guidelines for a more detailed methodology.

— Coverage in process: Both development and maintenance are supposed
to be covered in an integrated manner. Usage and support is also ad-

8.5 Chapter Summary 309

dressed [209] although not in the same detail. Planning and management
issues are neither covered in detail. It is basically aspects that are related
to conceptual modeling which have been described in much depth.

— Coverage in product: The whole portfolio is meant to be supported, al-
though most of the suggestions in this thesis are geared towards the support
of single application systems. The set of modeling languages also makes it
easy to model aspects of strategies, business processes, and organizational
structures and interrelationships between people in the organization.

— Reuse of product and process: Generative reuse is supported. Suggestions
for supporting compositional reuse have been made, although much work
is still to be done on this area.

— Representation of product and process: The methodological framework is
based on active use of conceptual models written in languages covering
several perspectives to modeling.

— Participation: Joint decision making guiding the development.

— Maturity: Low.

Looking more generally on the work presented in literature, we can con-
clude the following:

— Weltanschauung: As also noted by Hirschheim and Klein [170], most earlier
and current methodologies for application systems development and main-
tenance have an objectivistic outlook. Some exceptions are STEPS [120],
Multiview [16], and our own methodology [207]. Other examples are
methodologies based on SSM [61] and some PD-methodologies [325].

— Coverage in process: Most methodologies for CIS-support are focused on
development, with maintenance being looked upon as a separate end-
phase. Several methodologies focused specifically on maintenance also ex-
ist (e.g.CONFORM [52], see also [34]), even if this part of CIS-support
is not shown the same interest as development by researchers according
to [159, 194]. Some methodologies covers both development and mainte-
nance in the same framework in an integrated manner (e.g. The Spiral
Model [32], the Hierarchical Spiral Model [176, 177] and the framework
presented by Basili [21] where also emergency error-corrections are cov-
ered). STEPS [120] and our own methodology [207] also include aspect
related to usage. METHOD/1 [9] is strong in the area of managing and
planning.

— Coverage in product: We have found few methodologies apart from the
one we have suggested that cover traditional development or maintenance
of the whole portfolio in a focused manner, even though maintenance can
be said to often be performed in this way [357]. Several methodologies
include organization-wide CIS-planning (e.g. METHOD/1 [9]). Approaches
to enterprise-modeling (e.g. [324]) are also in this category, but they only
look into some aspects of CIS development and maintenance.

— Reuse: Some methodologies explicitly addressing reuse exist (e.g. RE-
BOOT [199)), even if few development and maintenance methodologies are

310 8. A Methodology for Conceptual Modeling

geared towards conscious component reuse. Operational and transforma-
tional approaches as described in [408] are highly geared towards generative
reuse. This is also the case with Tempora and our own methodology.

— Use of conceptual models: Many methods use conceptual modeling to some
extent, even if most use only semi-formal modeling languages e.g. most
OOA and OOD-approaches. On the other hand, the use of operational
conceptual models have received increased interest as illustrated through
Tempora and our own methodology.

— Stakeholder participation: Increasingly looked upon as important both in
objectivistic and especially constructivistic methodologies. This might be
endangered by the current trend of more and more use of packages and
outsourcing, although this might have other advantages.

— Maturity: Most mature methodologies resembles the traditional waterfall
model, but many of these, for instance Method/1, are taking newer aspects
into account. Most methodological frameworks described in literature have
a very low maturity, being described academically, but not used extensively
in practice. This especially applies to the methodology that we have pro-
posed, which is the framework which otherwise are meant to best cover the
other six aspects.

There seems to be an overall view that there is no right methodology
for all situation [16, 120, 139, 176] something which is also recognized in
more traditional methodologies like Method/1. The different development
and maintenance efforts can vary according to several factors e.g.:

— The wickedness of the problem (cf. Rittel [314]).

— The complexity of the application system (cf. Brooks [41]).

— The current state of flux.

— The size, perceived importance, and risks of performing the changes (cf.
Work on the spiral model by Boehm [32].)

— The number of stakeholders affected, skills needed, and possessed.

— The number of different views of the situation (cf. social construction the-
ory as described in the introduction).

Thus there is a need for flexibility, but in our opinion one still need
a methodology or a methodological framework of some sort to be able to
deliver CIS-support in an organization. Taking into account the multitude
of techniques, there is an obvious need for an integrative framework that
can incorporate existing more detailed approaches and support their flexible
situation-dependent use.

A. Evaluating OMT Using the Quality
Framework

We will in this appendix illustrate how the quality framework can be used in
evaluating existing languages and tools for conceptual modeling.

We have chosen OMT (Object Modeling Technique) [319] and the tool
support given for it in StPs OMT-tool as our example for showing how the
framework can be used for evaluation purposes. OMT is a well known and well
established approach. Place limitations hinders us to also assess additional
approaches. Specifically, an evaluation of UML would be interesting to do to
compare it with OMT.

OMT is briefly described in Sect. 2.2.6, and we will only recap the main
aspects here.

OMT has three modeling languages: the object modeling language, the
dynamic modeling language, and the functional modeling language. The Ob-
ject modeling language describes the static structure of the objects and their
relationships. It is basically a semantic data modeling language with some
extensions for the modeling of instances (i.e. objects). The dynamic modeling
language, which is based on Statecharts [162], describes the state transitions
of the system being modeled. It consist of a set of concurrent state transition
diagrams. The functional modeling language describes the transformations
of data values within a system. It is described using data flow diagrams. The
notation used is similar to traditional DFD with the exception of the possibil-
ity of sending control flows between processes, which are signals only. Actors
correspond to objects as sources or sinks of data.

The OMT methodology is divided into three phases; analysis, system de-
sign, and object design. The input to analysis is the problem statement and
the output is a formal model that identifies the objects and their relation-
ships, the dynamic flow of control and the transformation of data through
the system.

Recently, many companies, such as IDE (StP), Cadre Technologies, Select
Software Tools, Westmount Technology, and Platinum (Paradigm Plus) have
released modeling tools to support OMT [292]. We have chosen to use the
StP-version since this is regarded by OVUM [292] as the most comprehensive
of the tools, specifically for analysis and design tasks, where OMT primarily
focus.

312 A. Evaluating OMT Using the Quality Framework
A.1 Evaluation of StP/OMT

The evaluation is primarily based on [106, 178, 292, 396] in addition to [319].
The terms for specific language constructs are defined further in these works.

A.1.1 Language Quality

— Domain appropriateness:
OMT is claimed to be appropriate for a multitude of domains. Compared
to the object-model in [396], OMT is one of the object-oriented modeling
languages that has best coverage for object-oriented analysis and design.
It supports the object and structural perspective well. Missing analysis
features reported by Embley [106] are the lacking possibility of indicating
synonyms and homonyms, generic classes, high-level classes and high-level
relationship sets. It also supports the behavioral and functional perspec-
tive, but the perspectives are not clearly integrated. Aspects of functional-
ity are identified in all modeling perspectives, operations in object model-
ing, actions and activities in dynamic modeling and functions in functional
modeling. Even though it is outlined how to extract operations from the
object models, state diagrams and data flow diagrams, the process seem to
be quite intuitive and pays only minimal attention to the possible incon-
sistencies between the models and to their reconciliation. No meta-model
of the languages was originally made. It can also be stated that both the
support of the functional and behavioral perspective is better taken care
of in other languages covering these perspectives (e.g. choice and selec-
tion and temporal aspects of Statecharts are not included in the dynamic
modeling). Other missing analysis features according to [106] is interaction
details, high-level transitions, and high-level interactions. The functional
modeling language is basically traditional DFD, lacking e.g. continuos data
flow, actors and roles responsible for carrying out processes, and logical re-
lationships between the flows entering or leaving a process .
Regarding rules, these are partly supported through the possibility to state
constraints related to classes in the object-model, with the restrictions this
have [173] when it comes to represent rules applying to two or more ob-
jects. Exception handling is neither supported. Rule-hierarchies are not
supported, and neither is speech-act modeling. Actors and roles can be
modeled using objects and classes, but there are no constructs for differ-
entiating these from other classes, with the exception of the external actor
in the functional model.
Whereas static and dynamic aspects can be modeled, no explicit support
of the modeling of temporal aspects is given.
According to Embley [106], there are several features in OMT which should
be first used in design, and not in analysis. This includes: Values, attributes
and methods, object-class templates, abstract classes, pseudo-inheritance,
value-based identity, and semantic replacement. Obviously, one can use

-

A.1 Evaluation of StP/OMT 313

OMT in analysis without applying these concepts, but there is no tool or
methodology support for restricting the part of the language used for which
task.

The languages have both general and some very specific constructs, and are

composable in a similar way as traditional data, process, and state transi-

tion modeling languages, which means that the composability is somewhat
restricted. E.g. in the functional model, every flow must at least connect
to one process.

The languages can be flexible in precision, although the functional model-

ing language has the traditional lacks of DFD regarding formality.

Participant knowledge appropriateness:

The basis of OMT is a set of well known languages: DFD, ER, and state-

transition diagrams. On the other hand the object-oriented emphasis of

how these are applied might hinder the use at least initially, although less
than with purer object-oriented approaches ! It is not possible to model
inconsistencies explicitly.

Participant interpretation enhancement:

Regarding symbol discrimination, we note the following;:

— Objects, processes, and states have very similar representation.

— The symbol used for aggregation is similar to the symbol used for ternary
relationships.

Regarding the uniform use of symbols, we note that:

— Cardinalities are shown in three different ways: As a set of numbers,
as a filled or open dot, or as nothing (the last situation can give the
impression that the model is incomplete).

— Relationships (associations) are shown in four different ways, according
to if they are binary or n-ary (n>2) and if they have attributes or not.

— The actor symbol is used for modeling both actors and roles (as it is
usually done in DFD).

In the object model, emphasis is given to classes (and objects) through size

which seems sensible since these are the main concepts of this perspective.

Emphasis is also given to a special form of cardinality and overlapping

membership in specialization through blackness which seam more arbitrary.

Since one inserts attributes and methods in classes and objects, these will

differ in size, and they might get visually complex. The positive aspect of

this is that one have fewer nodes and types of nodes in the object model.

Using OMT to represent the example in Fig. 3.3, one would need 3 less

nodes, 3 less links, and the same number of textual annotations.

Similarly can be said about the introduction of the union-notation for the

state-diagrams, where the improved expressive economy is clearly more

important than the negative aspect of non-uniform size.

Technical actor interpretation enhancement:

OMT is regarded as a hybrid SA/OO approach since it borrows quite a lot from

structured analysis [396].

314 A. Evaluating OMT Using the Quality Framework

All modeling languages have well-defined syntax. Both the object and dy-
namic modeling language have well-defined semantics.

A.1.2 Potential for Creating Models of High Quality

When referring to tool-support below, we refer to what can be found in the
tool made by IDE (StP).

— Physical quality: StP is faithful to OMT with two exceptions: Event hi-
erarchies are not supported, and instance diagrams are substituted with
object interaction diagrams (from the Booch method). StP also include use
cases. IDE apply an adaptable meta-model so it is possible to add addi-
tional features to the languages used if this is regarded as sensible based
on the current modeling situation. This can be done both in an ad-hoc
fashion, and by reusing other well-known modeling approaches supported
in StP. The repository of StP is implemented in a Sybase RDBMS, thus
supporting standard database-functionality to ensure persistence and avail-
ability of models. An extension is that availability of models do not have
to go via the database. The tool have a collaboration-window, enabling the
modeler to show someone else on the network what is being done to the
diagram in real-time. Most changes can be kept private until committed,
but some changes need to be done directly in the repository, slightly com-
promising privacy. The locking strategy of StP is flexible, and enables total
constraints to be applied to the workgroup activities or for constraints to
be relaxed to the extent of very limited controls. The query reporting lan-
guage of StP(QRL) can be used to generate reports and interrogate the
repository. Repository items are time-stamped, and identify the name of
the modeler. Versioning of models can be done through the link to external
tools for configuration and version management such as ClearCase, SCCS,
RCS, and PCMS.

— Empirical quality. It is possible to visually or logically select a set of nodes
in a diagram, and move these as one. In a tree-structured diagram, the sub-
tree moves automatically when the tree-node is moved. Connections are
auto-routed, and snap-to-grid functionality is included. Scaling of symbols
to be able to fit the text inside the symbol is possible. Some auto re-draw
mechanisms is also included. Bridges/tunnels to show that connections
cross without meeting is not supported.

— Syntactic quality: Checking scripts can be invoked to report on e.g. vi-
olation of inheritance rules and cyclic inheritance. Syntax is checked in-
teractively. When saving files to the repository, additional error detection
mechanism is invoked, centering on the problem area in the diagram. In-
complete and inaccurate models can be stored on the other hand, also at
generation time. Checks for consistency between diagrams are supported,
e.g. the tool provides a checking script which identifies processes, actions,
and activities that are not yet represented as operations in the object

A.1 Evaluation of StP/OMT 315

model. QRL can be used to extend these possibilities even further, e.g. to
check that naming conventions are followed.

— Semantic quality: There is no formal initialization phase within the method.
However, the tool provides support for requirements capture and traceabil-
ity. Adding nodes to a diagram is easy. Nodes are selected from the tool bar.
Once selected, an item type can be added repeatedly without re-selection.
You can easily associate one item with another, by typing the name of
the associated item into the appropriate field in the dictionary form. The
editors can be configured to provide undo at any level. However, a com-
mitment of data to the dictionary cannot be easily undone. StP helps you
to find and reuse previously created definitions by presenting a list. As a
result you are less likely to create empty definitions accidentally by get-
ting the name wrong. The OMT-methodology suggest a set of guidelines for
achieving complete and valid models. Test cases can be generated automat-
ically from the use cases created. QRL can be used to perform translations
between models at different levels (e.g. analysis to design), which involve
population of the repository.

— Pragmatic quality: It is possible to create code frames and database
schemas from the models, a submodel, or a class, thus supporting the
creation of prototypes. Detailed code must be added manually. If you re-
generate the code frames after a model change, it can preserve your hand-
written code. QRL can be used to tailor the code-generation facilities. One
can translate a model in one modeling language into another in a simi-
lar type of modeling language, if the audience are more familiar with this
language. The tool provides help facilities for explaining the purpose and
correct usage of the modeling. No explanation generation of model behav-
ior is provided. StP supports what they call viewpoints, which is a filtering
mechanism allowing you to look at a diagram from a set of separately
storable perspectives. StP provides some pre-defined filters, and the mod-
eler can also create his own. Navigation-functionality such as pan, page,
infinite zoom, and the printing of a selected area and fit-to page printing
is included. Items can be found by searching for certain criteria besides
names. StP can also use wildcards when finding names. You can easily
browse from an item to any associated item. If you navigate to an item,
StP centers on that item and flashes it three times.

— Social quality: Not addressed specifically.

— Knowledge quality: Not specifically addressed in the methodology.

316 A. Evaluating OMT Using the Quality Framework

B. Algorithms

We present in this appendix some of the detailed algorithms used in connec-
tion with consistency checking in PPP.

B.1 Static Consistency Checking for PPM

Algorithm Calculation-of-Input-Output-Condition
input: An output O of the process network;
output: The i/o condition expression for O on the external inputs of the network;

begin
in the i/o conditions for the subprocesses which has output O
{ O and inputs to the subprocess are given different numbers in the
sub-processes respectively}
collect all n rows for O, form the expression
So =TiV--- VT, T; ZIil /\---,/\Ii].
{(i > 1 and I;; is an input for a subprocess }
and let Sy be the current expression;
repeat
if in the i/o condition of a sub-process which has ni inputs and outputs O
there is no row for O
then begin form the expression S1 =1L V---V I, ;
{I; is the name of an input to the sub-process, 1 < j <n;}
{just assume there are n, rows for O, each of which shows an input is used}
let So, be the disjunction of the current expression and Si;
let So, be the current expression;
until all such sub-processes have been found;
repeat do on the current expression S
begin
if any input I is linked to the output(s) O1, -+ ,0m(m > 1)
of the subprocesses in the process network through some flow(s)
then substitute I with C; V ---V Cp,
{ Ck(1 < k < m) is the condition expression for O}
and let the new expression after the substitution be the current expression;
if I is linked with a data store and the data store receives data from
outputs O1,---,0,
then substitute I with C1V ---V C,
{ Ck(1 < k <) is the condition expression for Oy}
and let the new expression after the substitution be the current expression;
if I is linked with a data store and the data store does not receive
any data within the process network

318 B. Algorithms

then substitute I with I, V ---V I,
{ I.,--- I, are all the external inputs to the process network}
and let the new expression after the substitution be the current expression;
transform the current expression into a disjunction normal form Sy ;
delete from S,, all the conjunction terms whose inputs are external inputs to
the network but they can not appear together in any CIP of the higher
level process, and let the left parts of S, be the current expression
end

until the content of S can not be changed by the above substitutions or S

has been the same with one of the old expressions:

delete all the conjunction terms that contain an internal input from the

current expression;

let the left part of the current expression be the condition expression of O for the

process network;

end (algorithm)

B.2 Constructivity Checking in PPM

Now we introduce the data structure of the state vector in a PASCAL-like
syntax:

type state_vector =

record
normal_system_state : boolean;
states_of_processes: array[1:N] of state_of_process;
{there are N processes in the network}
states_of_flow_pipes: array[1:M] of state_of_flow_pipe;
{there are M flows in the network}

end;

type state_of_process =
record
running: boolean;
CIP: CIP_state; {one CIP is used during an execution of the process }
COP: COP_state;{one COP is used during an execution of the process }
end;

type state_of_flow_pipe =
record
volume: integer; {the maximum capacity of the flow}
has_data: integer; {the sum of data staying in the flow at a moment}
end;

type CIP_state =
record
ID: integer;{the identifier of the CIP in the process}

receive_events: array[1:NI] of event; {NI possible kinds of events at the CIP}
end;

type COP_state =
record
ID: integer;{the identifier of the COP in the process}

B.2 Constructivity Checking in PPM 319

send_events: array[1:NO] of event; {NO possible kinds of events at the COP}
end;

type event =
record
event_name: string;
happening_times: integer; {the times that the event has happened during
the current execution of the process }
end;

Following is the algorithms for the state-transition. The first one is to
check out all possible event sets at a specific state.

type set_of_event_sets = set of events;
type events = set of string; {a set of event names}

Algorithm Find-Possible-Event-Sets(S : state_vector,

var PESS : set_of _event_sets))
parameter: input: a state-vector S; output: the set of all possible event sets at the
state;

begin
PESS := ©; {it is set to empty initially }
{search all possible event sets}
for each process P in the network do
begin

if for the process state of P in S

S.states_of processes[i].running = false

{ i is the index of the process state for P in S }

then {P is idle}

begin
if for every triggering input of a CIP of P
S.states_of _flow_pipes[j,].has_data # 0
{ juv is the index of the state of the flow linked to
the member of the triggering input group in S}
then insert {receive_ij, ,---,receive_i;, } into PESS;
{that P is triggered and then receives the triggering inputs is a
possible event}

end

else { P is running}

begin
{check if P can terminate}
if for any non-triggering and non-conditional input in the CIP and any
non-terminate and non-conditional output in the COP,
S.states_of _processes[i].CIP.receive_events[ki].happening_times = e;
{e1 =1 for a singular input, > 2 for a repeating input},
{ k1 is the index of the input in S.states_of _processesli] }
S.states_of _processes[i].COP.send_eventslkz].happening_times = ez
{e2 =1 for a singular output, > 2 for a repeating output},
{k> is the index of the output in S.states_of _processes[i] }
and ey, ey satisfies the condition specified in the assumptions,
then {P can terminate}

insert {send_om,, ,- -, send_om, } into PESS;
{0my, " ,0m, are all the terminating outputs of the COP of P}

else {P can not terminate }

320 B. Algorithms

begin
if for a flow f which is linked with an input I in the CIP
S.states_of _flow_pipes[h].has_data # 0 {the linked flow has data}
{h is the index for the state of the flow is S}
and S.states_of _processes[i].CIP.receive_events|c].happening_times < e,
{there is at least one input to be received }
then
find out all such inputs iy, ,- -4, and insert
{receive_iy,, -, receive,, } into PESS
else {no input to be received}
begin
if for a non-terminating output O in the COP
S.states_of _processes[i|.COP.send_events|c].happening_times = ey,
{c is the index for the output O in the state S}
, e2 does not satisfy the condition specified in the assumptions
and the output is ready according to the i/o condition of P
and the state of CIP of P
{there is at least one non-terminating output to be sent out}

then find out all such outputs og,,- -, 04, and insert
{send_og,,- -, send_og, } into PESS
end
end
end

end { all possible event sets for process P have been found}
{all the possible events sets for the whole process network have been found}
end (the algorithm)

The second algorithm builds new state nodes from a state node S and
calculate all the new states resulting from the corresponding event groups.
Every new state is checked to see if it is a consistent state. If it is, then the
algorithm is called recursively to calculate more possible states; otherwise it
is marked as an inconsistent state.

Algorithm State-Transition(S : state_vector, PESS : set_of _event_sets)
parameter: a state-vector S and the possible event sets PESS at the state;

result: extension of the state transition diagram with possibly more nodes from
the state S;

begin
var NEW _PESS: set_of_event_sets;
if PESS = O {No events may happen at state S }
then mark the node for S as a STOP node
else {there are possible event sets in PESS}

begin
for each event set ES in PESS do
begin
case ES = {receive_ij, ,---,receive_ij; }
and the l inputs are triggering inputs to the process P:
begin

calculate all possible m CIP/COP pairs on the triggering condition

{ a triggering group inputs may trigger more than one CIPs, and

each CIP may produce outputs for more than one COP }

create m new nodes with state_vectors Sp,,- -+, Sn,, and with the
CIP/COP pairs respectively and m edges from the node for S to them,

B.2 Constructivity Checking in PPM 321

all marked with the

value of ES receive_ij, ,- -, receive_iji;

assign value to the state_vectors to express that:
process P is now running;
the flows for the triggering inputs are now empty;
{ the has_data items in S,, for the flows is 0 now }

The events receivej, ,- - -, recetveij; have happened once;
All other events for P have not happened yet;
end
case ES = {send_oj,,-- -, send_oj, }
and the s outputs are terminating outputs to the process P:
begin
create a new node with state_vector S,, and an edge from the node
for S to it;

mark the edge with the value of ES;

assign value to the state_vector Sy:
first copy the value of S to Sy;
then change the data so that P is idle and all other data for P is cleaned
and each of the flows linked to the outputs has got a new item ;

{ the has_data items for in S is added with 1 if the flow is not

linked with a data store}

end

case ES = {receive_i;, ,---,receive_ij; }
and the | inputs are non-triggering inputs to the process P:
begin

create a new node with state_vector S, and an edge from the node for S to it;
mark the edge with the value of ES;
assign value to the state_vector Sy:
first copy the value of S to Sy;
then change the data so that the has_data items and happening_times
in S for the inputs and the corresponding flows changed;
{for any receive operation, if the input is not an external and repeating
input and the flow is not linked with a data store,
then the has_data of the flow is reduced with 1; The happening_times
for the receive event is added with 1 }

end
case ES = {send_oj,,-- -, send_oj, }
and the s outputs are non-terminating outputs to the process P:
begin
create a new node with state_vector S, and an edge from the node
for S to it;

mark the edge with the value of ES;
assign value to the state_vector Sy :
first copy the value of S to Sy;
then change the data so that the has_data items and happening_times
in S for the inputs and the corresponding flows changed
{for any send operation the flow has one more ite[m if it is not
linked with a data store, and the send event is added with 1 }
end;
end; {all the new nodes have been created}
{now check the consistency of every new node }
for each new node with its state_vector S, do
if S,, falls into one of following cases:

322

B. Algorithms

two CIP with different triggering inputs of an idle process may be triggered;
a CIP of an executing process may be triggered;
a flow contains the data more than its volume;
then S, .normal_system state := false; {mark S, as “inconsistent state”}
{now check any possible loop structure in the STD }
for each new consistent node with its state_vector S, do
if S, is same with a state_vector S, of a node which has exited in the STD
being constructed, or it is same with S, in all other part but that for
a process P and all the flows linked with the inputs of P, and
the events are triggering P at a different CIP with that of S, but
all other consequent events for P will be same with that in S,
then begin { a loop may have been found}
erase the node and the edge from the node for S to it;
attach S to the node for S,;
create an edge from the node of S to that of S,, and marked the edge
with the event set used for marking the removed edge;
end
{ recursively call the algorithm to expand the STD }
for each new consistent node with state_vector S, do
begin
call Find_Possible_Event_Sets(S,, NEW _PESS);
call State-Transition(S,, NEW _PESS);
end
end;

end (algorithm)

On the basis of the two algorithms, we now illustrate the algorithm to

construct the STD of a process network which is a decomposition of a higher
level process P. We will first build a START node representing the initial
state S when the network is idle, then collect all the triggering event for P
as the possible event sets, and call the previous algorithm to construct the

STD from S.

Algorithm Construct-ST D

input: The information for a process P and a process network N as the decompo-
sition of P, including the canonical port structures and i/o conditions for P and all

the

processes in IN;

output:: An STD which shows the possible execution cases of N;

begin

var PESS: set_of_event_sets;
create a START node with an initial state S at which all processes in N are
idle and all flow are empty;
S.normal_system_state := true; {mark the state as “consistent state”}
create n new nodes and n edges from the START node to them;
{ The higher level process P has n CIPs }
mark any edge with the event “arrival of data at the inputs” on a particular
CIP { the special events only be recorded at the initial state}
for each new node do
begin
create a new state_vector S, and copy the value of S to Sy;
update the value of S, so that the flows for a CIP of P is full;
{every corresponding flow has a item}
if there is any conditional input in the CIP

B.2 Constructivity Checking in PPM 323

then begin
create a new node and an edge from the START node to it with
the same events;
copy the state_vector S, to S, as the state_vector of the new node;
update Sy, so that all the flows linked with the conditional inputs
are empty;
end;
{create another state_vector where the conditional inputs are empty}
end (for)
for each new node with a state_vector Spe. do
begin
call Find_Possible_Event_Sets(Spew, PESS);
call State-Transition(Snew, PESS);
end (for)
end (algorithm)

Algorithm Construct-Input-Port-For-Process-Network
input: An STD for a process network and all other data for the network;
output: An input port structure for the process network;

begin
identify all n possible paths;
for each path Path; (1 <i<n)do
create a list which includes all the receive events for the inputs from external
flows along the path;

from all the list List,- - -, List,, select out List.,,- -, List.,, that the event
set in each of them is not proper subset of the event set of any other list among
Listy,---, List, and any lists with exactly same members are merged into
a single list;
for each list among List.,,---, List.,, do
create an and port P; (1 <i < m) whose members are the inputs appear
in the list;
create an xor port PI = xor(P1,---,Pn);
for each input I from external flow do
begin
if the event for receiving I does not appear in a list and the event set of the list
is a subset of the event set of any list among List.,,---, List.,,

then mark I as conditional input;
if the event for receiving I appears in any list and it appears twice or more
in a list among List.,,- -, List., and at least it appears
once outside any loop in the paths
then mark I as a repeating input;
if I only appears in loops
then mark I as a conditional and repeating input;
if I does not meet any condition above
then mark I as a singular input;
end;
end (the algorithm)

324 B. Algorithms

C. Mathematical Symbols

In this appendix, we list the main mathematical notation used in the book.

Symbol Meaning

S Set

28 Powerset

Cardinality i.e. number of members of a set
A set with no members
Proper subset of set
Subset of set

Not subset of set
Element of set

Not element of set
Equivalent to

Not equivalent to
Complement set

Set union

Set intersection

DC/HIIImmﬂIﬁﬁS:g:)

Negation
Logical and
Logical or
Implication

Sometime in past
Sometime in future
Always in past
Always in future
Just before

Just after

Until

Since

hHh{o e RO 1 <>

Trigger
Condition

ASSE

326 C. Mathematical Symbols

Os State condition
Y Consequence
g Action

(U8 State

p Role

« Actor

& —“eTATAG

Deontic operator
Obligatory
Recommended
Permitted
Discouraged
Forbidden

(¢ | ~eTATA¢$) General rule
Necessary
Excludes
Real time
Temporal module time

BZA4M0TROA

~+ o+
2w

Audience, the technical and social actors that must relate to a model

A member of the audience

The set of all statements that can be stated about a problem at hand

The set of all statements which the audience think that a model consist of

The set of statements regarded relevant among the participants.

All possible statements that would be correct and relevant for addressing the problem
at hand according to the explicit knowledge of the participant A;

The statements of the explicit internal reality of the social actor A4;

The statements that can be expressed in a given (set of) languages

L; A language

.

<.

=

N aAaNDEN

Lp Statements expressible in a set of formal (operational) languages
Lr Statements expressible in a set of informal languages

Ls Statements expressible in a set of formal (logical) languages

Ls Statements expressible in a set of semi-formal languages

L; The statements that can be stated in language L;

M The set of statements in an externalized model

Mg The set of explicit statements in an externalized model

M The set of implicit statements in an externalized model

M; A model based on the knowledge of social actor A;

My, A model written in language L;

M? The statements in a model which are relevant for audience member A;
M(L;) The language model of language L;

M(D) The model of a given domain

P The individual social actors of the audience

C. Mathematical Symbols 327

When used about actors, the stakeholders to the modeling, else a general set
A viewspec of a model

328 C. Mathematical Symbols

D. Terminology

We give in this appendix a comprehensive overview of the terminology used
in the book. We have also included some of the abbreviations being used.

Terms will be written in italic type when first defined, and will also be
written in italic when they are used as part of other definitions. The ter-
minology is in particular based on [235, 350, 388]. It is also influenced by
our philosophical stance of social construction. This appears especially in the
definitions of the basic terms, although the definitions themselves are writ-
ten in a categorical style for us to be able to use the terms consistently. A
constructivistic view is also followed in FRISCO, a group within IFIP WG
8.1. on design and evaluation of information systems which are trying to
establish a framework for information systems terminology [126, 235]. Simi-
larly to FRISCO, we have used a set-theoretic approach, although this is not
emphasized here.

Terms are grouped in the following areas:

— Time.

— Phenomena.

— State and rules.

— Data, information, and knowledge.
— Language and models.

— Actors and activities.

— Systems.

— Social construction.

— Methodology.

In some cases the definition of a term is found after that it has been
used in another definition. An alphabetical overview of the terms are given
separately at the end of the appendix.

D.1 Time

The definitions in this area are to a large extent pragmatic, to be able to
use them in a well-defined manner in the later definitions. Thus, we are not
entering into philosophical and quantum mechanical aspects of the nature of
time.

330 D. Terminology

Time points . Time can be represented by time points, such that the only re-
lation between time points other than identity is that one time point precedes
the other.

Time interval . A time interval is the ordered pair of time points (the begin
and end-point of the interval) such that the first either precedes or is equal
to the other.

Time scale . A time scale divides time into coherent time intervals.

Time unit . The smallest time interval that can be represented on a given
time scale is termed the time unit.

Duration . The duration of a time interval is the number of consecutive
time units between the one after the one in which the begin point of the time
interval occurs, until and including the time unit in which the end point of
the time interval occurs. A time point has no duration.

Figure D.1 illustrates the terms discussed in this section.

Time unit Time points
S\ Duration
[I I I
Time scale
Begin time End time

Fig. D.1. Time and duration

D.2 Phenomena

A phenomenon is used as the elementary unit of the terminology. In other
similar terminologies, the term ’thing’ is used in this respect [235, 388].

Phenomenon . A phenomenon is something as it appears in the mind of
a person. The world is perceived by persons to consist of phenomena. A
phenomenon can be perceived to exist independently of the perceiving person,
or be perceived to be a purely mental.

With the phrase 'something which is perceived to exist independent of the
perceiver’, we mean something that the person in question regards as existing
external to him, for instance another person. An idea of a new CIS that only
appears in someone’s mind though have no such “real-world” equivalence, at
least not until it is externalized.

D.2 Phenomena 331

Relevance . A phenomenon is of relevance to a non-empty set of persons in a
time interval if it is of interest to all members of the set in the time interval.

Potential relevance . A phenomenon is of potential relevance to a non-empty
set of persons in a time interval if it is of interest to at least one of the persons
in the set in the time interval.

Relevance is socially and temporally constrained which are as expected
taking social construction into account. Relevance needs the notion of shared
explicit knowledge (see below) to be meaningful i.e. if there are no phenomena
which are perceived equally by two persons, no phenomena will be relevant.

Domain . A domain is defined as the source of any kind of mapping.
'Domain’ includes the meaning known from algebra, but the term 'map-
ping’ is used in a slightly more general sense than usual. Not only sets can
be mapped into sets as in mathematics, but also areas into areas. When used
in the mathematical sense, a domain will be a finite or infinite set of values.

Property . A property is an aspect of a phenomenon which can be described
and given a value. A phenomenon will have a set of potentially relevant
properties. The values for the properties are members of the domains for these
properties. All phenomenon have at least one property, namely its perceived
individual existence or lack thereof.

Type . A non-empty set of properties which together characterize certain
phenomena.

Subtype . A subtype S of a type T is a set of properties such that T is a
proper subset of S.

Supertype . A subset of a type

Class . The set of all phenomena of a certain type. These phenomena are
called the members of the class.

Subclass . The subclass S of a class T is the proper subset of the class T
such that the phenomenon in S has a type which are a subtype of the type
of the phenomena of T.

When having several sub-classes of a class you can have different cases
based on coverage and disjointness.

A set of subclasses of a class cover the class if all members of the class
are members of at least one of the subclasses.

A set of subclasses of a class are disjoint if no members of a subclass are
members of any of the other subclasses of the class.

A set of subclasses which are both disjoint and cover the class is called a
partition of the class.

Environment . The environment of a phenomena is the set of actors which
acts upon it.

332 D. Terminology

D.3 State and Rules

State . The state of a phenomenon is the set of mappings of all proper-
ties of the phenomenon into values from the domain of the properties. A
phenomenon can only be in one state within a time unit.

State space . The state space of a phenomenon is the set of all possible states
of the phenomenon. All subsystems of a system have its own state space.

Transition . A transition is a mapping from a domain comprising states to
a co-domain comprising states.

Event . An event is a change of state of a phenomena. It is effected through
a transition. An event happen within a time unit, i.e. it has a zero duration.

Trigger . A trigger is a relationship between an event and one or more
activities and expresses the perceived cause for an actor to carry out the
activities.

History . The history of a phenomenon is the chronologically ordered states
of the phenomenon.

Rule . A rule is something which influences the actions of a non-empty set
of actors. A rule is either a rule of necessity or a deontic rule [393].

The term rule is used to cover more situations than what is usually found,
since it also includes what is often referred to as goals, guidelines or instru-
mental rules [294].

Rule of necessity . A rule of necessity is a rule that must always be satisfied.
It is either analytic or empirical (see below).

Analytic rule . A rule of necessity which can not be broken by an inter-
subjectively agreed definition of the terms used in the rule is called analytic.
Example: "The age of a person is never below (’

Empirical rule . A rule of necessity that can not be broken according to
present shared explicit knowledge is called empirical.

Although not as strongly necessary as an analytic rule, this kind of rules
are rules that can be treated as if they are rules of necessity, and one would
not expect them to be broken.

Example: 'Nothing can travel faster than the speed of light’

Deontic rule . A rule which is only socially agreed among a set of persons.
A deontic rule can thus be violated without redefining the terms in the rule.
A deontic rule can be classified as being an obligation, a recommendation, a
permission, a discouragement, or a prohibition [214].

‘deovTws’ is Greek and means “ as it should be”. The inclusion of rec-
ommended and discouraged above is novel compared to traditional deon-
tic logic [385], but has been included in newer frameworks for deontic logic
e.g.[191, 192].

D.4 Data, Information, and Knowledge 333

Constitutive rule . A deontic rule which applies to phenomena that exist
only because the rule exist [327].

Generally, this kind of rule can be written: A counts as B in context C.

When using a general rule-format, the context is included in the precondition.

Static rule . A rule restricting the allowable states of a phenomenon is called
static.

Dynamic rule . A rule restricting the allowable state transitions of a phe-
nomenon is called dynamic.

Temporal rule . A rule referring to the situation of more than one state
Both rules of necessity and deontic rules can be classified as being static
or dynamic.

Lawful transition . A transition is lawful if it obey the dynamic rules of
necessity regarding the phenomenon.

Deontic transition . A transition is deontic if it is lawful and also obey the
dynamic deontic rules regarding the phenomenon.

Lawful state space . The set of states of a phenomenon that comply with
the static rules of necessity concerning the phenomenon is termed the lawful
state space.

Deontic state space . The set of states of a phenomenon that are lawful and
in addition comply with the static deontic rules concerning the phenomenon
is termed the deontic state space.

Internal event . An event that arises in a phenomenon by virtue of a lawful
or deontic transition in the phenomenon is called internal.

Eaxternal event . An external event is an event that arises in a phenomenon
by virtue of the act of an actor in the environment of the phenomenon.

Stable state . A state in which a phenomenon will remain unless forced to
change by virtue of an external event.

Unstable state . A state that will change into another state by virtue of an
internal event is called unstable.

D.4 Data, Information, and Knowledge
Knowledge . Knowledge is the justified true belief of a person.

Knowledge is by definition linked to the individual person. It can be di-
vided into explicit and tacit knowledge.

334 D. Terminology

Exzxplicit knowledge . Explicit knowledge is the awareness of a person of prop-
erties and values of properties of phenomena.

This indicates that it is both explicit knowledge to be aware of a persons
height in cm, and that ’height’ is a relevant property of a person. Since
also a person is a phenomenon, the explicit knowledge he or she has can
be looked upon as part of the state of this phenomenon since a potential
relevant property of a person can be that he is able to know something, and
what he or she knows. Through infinite introspection this could indicate that
the knowledge of a person is infinite, but since it is seldom relevant with this
kind of introspection, this is not found problematic. Explicit knowledge can
be more or less precise, certain, and complete.

Example on precision: That someone knows that a city has 2,433,775
inhabitants at a certain time is more precise explicit knowledge than if the
same person know that a city has around 2.5 million inhabitants.

Example on completeness: That someone knows that Oslo is the capital
of Norway is less complete knowledge of Oslo than to also know that Oslo is
located in the southern part of Norway.

Example on certainty: A poor farmer in Kuala Lipis who once have heard
about the city of Bombay and that it lies in India has less certain explicit
knowledge than someone who have been there himself. If you hear something
several times from several different people, your certainty of some explicit
knowledge will usually increase. If you have only read it once in a tabloid
newspaper, your certainty of the “fact” is usually lower.

In FRISCO [235], explicit knowledge is termed information. We define the
term ’information’ differently below.

Shared explicit knowledge . Shared explicit knowledge is an inter-subjectively

agreed identical awareness of some properties and values of properties of
phenomena by two or more persons which have been achieved through a
process of social construction.

Tacit knowledge . Tacit knowledge is knowledge that can not be represented
externally to the person and only shows up in the actions of the person having
the knowledge.

It is possible to differentiate between two kinds of tacit knowledge. That
which could have been represented externally, but which one either choose
not to, or can not find the appropriate symbols for, and so-called true tacit
knowledge.

Information . Information is externalized explicit knowledge which are not
already known by the person who receives it, i.e. a state transition for a
person appears when he receives information, thus receiving information can
be looked upon as an event.

This means that information is socially and temporally constrained. If I
already know something (and know that I know it) , I do not perceive to
receive information if I am told the same thing again (even if the certainty of

D.5 Language and Models 335

the knowledge might increase). Thus our definition is hopefully close to the
one used in everyday language as illustrated in [235] “Information is what
you get or may get if you ask certain kinds of questions.... Answers to such
questions are often provided at some information desk.”

Symbol . The explicit knowledge of a person can be externalized in a per-
sistent form using symbols.

Message . A set of related symbols expressed in a language transmitted by
an actor intended for a non-empty set of actands. The set of actands which
ultimately receives the message can be empty.

Communication . The exchange of messages between actors.

Sign . A sign is the triplet (symbol, person, phenomenon), i.e. a sign is
symbol that represent a phenomenon for a person.

Data . Data are symbols that can be preserved, transformed, and trans-
ported by a computer. Data and other symbols can be internalized as knowl-
edge by persons.

D.5 Language and Models

Language . A set of symbols, the graphemes of the language being the
smallest units in the writing system capable of causing a contrast in meaning,
a set of words being a set of related symbols constituting the vocabulary of
the language, rules to form sentences being a set of related words (syntax),
and some inter-subjectively agreed definitions of what the different sentences
mean (semantics).

In a natural language e.g. English, the symbols and words will be ordered
linearly, whereas in a two-dimensional language symbols are ordered spa-
tially. In addition to the aspects described above, one also often talks about
the pragmatics when discussing languages, being the relationship between
symbols, words, and sentences and the effect these have on persons.

Statement . A sentence representing a single property of a certain phe-
nomenon.

Language extension . The set of all statements that can be made according
to the graphemes, vocabulary, and syntax of a language.

Natural language . A natural language is the language of a cultural society
(for instance a tribe or a nation) - It is usually learned and applied from
childhood by the set of persons belonging to the society.

Professional language . A professional language is a language used by a
set of persons working in a certain kind of area or in a scientific discipline.
Usually such a language is not learned before the person has been active in
the area for a while.

336 D. Terminology

Formalism . A formalism is a formal language, i.e. a language with a pre-
cisely defined vocabulary, syntax, and semantics.

The semantics can be operational and/or logical. If the semantics is based
on mathematical logic, we use the term logical formalism. If it is possible to
execute a set of sentences in the language on a computer, the language is said
to have an operational semantics.

All formalisms are professional languages.

Semi-formal language . A semi-formal language is a language with a pre-
cisely defined vocabulary and syntax, but without a precisely defined seman-
tics.

Also semi-formal languages (e.g. DFD) are professional languages.

Informal language . An informal language is neither formal nor semi-formal.
Natural languages are of this category, and also a professional language can
be informal.

Abstraction . An abstraction is the phenomenon of a set of phenomena
and its properties at some level of approximation. The abstraction contains
incomplete explicit knowledge about the phenomena, i.e. there are more to
know about the phenomena than is in the abstraction. This do not mean
that the abstraction can not contain all relevant knowledge in a given time
interval.

Classification . The abstraction where individual phenomena are grouped
together in a class based on perceived common properties.
Example: “Rod Steward” and “Mick Jagger” can be grouped together in
the class “singers”.

Aggregation . An abstraction which is a Cartesian product of classes.
Example: A bicycle being built up from wheels, a seat, a frame, handlebars
etc.

Generalization . An abstraction which is a subset of the union of a set of
classes.
Example: Both employees and customers are persons.

Association . An abstraction which is a set of classes.

Example: The classes “Men” and “Woman” are members of the set “sex-
groups”.
Model . A model is an abstraction externalized in a language.

A model is assumed to be simpler than, resemble, have the same structure
and way of functioning as the phenomena it represent.

Conceptual model . A model of a domain made in a formal or semi-formal
language with a limited vocabulary.

Comment: Many conceptual modeling languages are partly diagrammatic,
in which case they are are combination of logographic and iconographic, but
this is not looked upon as a requirement. Some conceptual modeling languages
also have aspects that are pictographic.

D.6 Actors and Activities 337

Language model . The model of a language.

Within conceptual modeling, this is often termed ’'meta-model’, which is
only a proper term when looking upon it from the point of view of repository-
management for a modeling-tool where the instantiation of the model is an-
other model in the same or a different modeling language.

System model . A model of a system.

D.6 Actors and Activities

A phenomenon is acted upon by another phenomenon if its history is different
from what it would have been if the other phenomenon did not influence it.

Actor . An actor is a phenomenon that acts upon another phenomenon, the
actand .

Acquaintances . The acquaintances of an actor is the set of actors that either
acts upon or is acted upon by the actor.

Social actor . A social actor is an actor that includes at least one person.
Social actors might be individual or organizational (see below).

Technical actor . A technical actor is an actor that do not include any
persons.

Technical actors can be computational and temporal . Other subtypes of
actors might for instance be production actors, but these will not be discussed
here.

Whereas temporal actors are some time-measuring device (i.e. a clock
of some sort), computational actors are either hardware actors or software
actors. Computational actors are either atomic or systemic including atomic
and systemic subsystems. Computational actors can be said to be compatible
in the following meanings:

— Hardware compatibility: Stating which hardware actors that can act upon
each other.

— Executional compatibility: Describe which software actors that can be
executed on which hardware actors.

— Software compatibility: Stating which software actors that can act upon
each other.

Software actors can be versions of 0:N other software actors, i.e. a software
actor can be recreated by performing a set of state changes to the actor it
is a version of. A set of state changes in this meaning is called a delta. The
original actor is called a predecessor of the version actor, whereas this is
called a successor of the original actor. Software actors might have several
predecessors and successors. These relations are transitive. Two or more soft-
ware actors that have the same immediate predecessor are termed variants

338 D. Terminology

Software actors are supportive or applicative relative to an orga-
nization. The difference is that applicative actors are being customized to
some degree to cater for the specific needs of the organization. For instance
will a customized order-entry application system be regarded as applicative,
whereas an underlying commercial database system which is used by the
order-entry system is supportive. Subtypes of supportive actors are [302]:

— General supportive software actors are software actors that potentially sup-
port all social actors in an organization. Examples of classes of these are
operating systems, file-handlers, and window-systems.

— Office supportive software actors are software actors supporting office work,
example of classes of these are word processors, database systems, graphics
tools, spreadsheets, communication programs, and statistics programs.

— Developer supportive software actors are software actors that typically
only support developers of applicative software actors directly. Examples
of classes of such systems are compliers, CASE-tools, debuggers, general
modeling tools, building tools, versioning tools, and test tools.

Internal actor . Actors being internal to an organization are actors being
part of the organizational system of the organization in one or more of the
relevant roles they are currently filling.

External actor . Actors being external to an organization are actors not
being part of the organizational system of the organization in any of the
relevant roles they are currently filling.

Individual social actor . A person interacting with his environment is termed
an individual social actor.

Organizational social actor . An organizational actor is a social actor which
consists of a set of more than one person performing goal-oriented and co-
ordinated action. An organizational actor can also include technical actors,
but this is not mandatory.

Permanent organizational actor . An organizational actor for which a begin
time-point of its existence can be perceived, but normally not the future end
time-point.

Temporary organizational actor . An organizational actor for which both
the begin time-point and the possibly future end time-point of its existence
can be perceived.

Periodic organizational actor . An organizational actor for which a set of
begin time-points and (possibly future) end time-points of its existence can
be perceived, and where there is normally the same time-interval between the
different begin time-points. The duration of this time-interval is longer than
the individual lifetime of the organizational actor.

Reincarnation . The creation of a periodic organizational actor.

D.7 Systems 339

Action . An action is the phenomenon of one phenomenon acting upon
other phenomena.

Activity . An activity is a system of actions.

Stakeholder . The stakeholders of an activity are the set of persons who
perceive or is perceived by other persons to potentially lose or gain from the
activity.

Participant . The participants of an activity are the set of persons who act
upon the actands of the activity as part of the activity.

Process . A process is an activity which takes a set of phenomena and
transforms them into a possibly empty set of phenomena.

Behavior . Behavior is defined as a time series of activities.
Role . Behavior that can be expected by an actor by other actors.
Agent . An actor acting in a particular role.

Formal role . A role where part of the expected behavior of an actor filling
the role is institutionalized by an organizational actor. A typical example of
a formal role is a position such as a professor. All roles have usually also two
additional aspects:

— The informal part of the role. Expectations to an actor filling the role which
are not institutionalized. e.g. a professor is absent-minded.
— The expectation to an agent, because of the particular actor filling the role.

Role conflict . Inconsistent expectations to an actor because of filling two
or more roles or because of differing expectations to a role that the actor fill
from two or more other actors.

D.7 Systems

System . A system is a set of correlated phenomena, which itself is a phe-
nomenon. Each phenomenon that is contained in the system is said to be part
of the system. A system has at least one systemic property not possessed by
any of its parts.

The following example taken from [235] indicates the necessity of the
requirement of a systemic property: If you buy some eggs from a farmer
and use two of them for breakfast, then the correlated phenomena: You, the
farmer, the farmers hen that laid the eggs, the frying pan you used to prepare
the eggs, and the two eggs now in your stomach could fit as a system using
a definition not including a systemic property.

System viewer . A person who perceives the system as a phenomenon.

340 D. Terminology

Subsystem . A subsystem of a system is a system that is part of another
system, the set of phenomena being part of the subsystem is a proper subset
of the set of phenomena being part of the whole system.

Subsystem structure . A partition of a system into a set of subsystems to-
gether with a set of correlations among the subsystems.

Constructivity . The relevant properties of a system can be derived from
the relevant properties of the subsystems of the system given the subsystem
structure of the system [350].

Constructivity should not be confused with social construction theory.

Active system . A system where at least one of the subsystems is an activity
is called an active system.

Passive system . If there is no subsystem in the system that is an activity,
it is called a passive system.

Open system . A system is open if it has an environment.

Information system (IS) . An information system is a system for the dissem-
ination of data between persons, i.e. to potentially increase their knowledge.

Data system . A data system is a system to preserve, transform, and trans-
port data.

A data system is usually a sub-system of an information system. Both
data systems and information systems may be contained in the domain they
convey data about.

Organization . An organization is defined as a non-empty set of persons,
and other phenomena which is a phenomenon where goal-oriented and co-
ordinated action is aimed at.

An organization is an organizational actor when interacting with other
phenomena.

Organizational system . An organizational system is a system having the
actors and activities of an organization as subsystems.

Organizational information system (OIS) . An OIS is the information sys-
tem for the dissemination of data within an organization. The OIS is a sub-
system of an organizational system.

Computerized information system(CIS) . A CIS is an information system
which are based on the use of computers for the dissemination of data.

User (of a CIS) . A user of a CIS is someone who potentially increases his or
her knowledge about some phenomena other than the CIS with the support
of the CIS. An end-user increases his and hers knowledge in areas which are
relevant to him independently of the actual CIS by interacting with the CIS.
Indirect users of a CIS increase their knowledge by getting results from the
CIS without directly interacting with the actual CIS.

D.8 Social Construction 341

Computerized organizational information system (COILS) . A COIS is a
system for the dissemination of data within an organization which are based
on the use of computers. This is a subsystem of the OIS of the organization.

The COIS contains the set of internal software actors which support the
internal social actors of the organization, and the hardware actors these soft-
ware actors are executed on.

Application system . An application system is a subsystem of the COIS
being adapted to the needs of the organization.
When an application system interact with its environment it is an ap-
plicative actor.

(Application system) portfolio . The portfolio of an organization is the set
of application systems in the COIS of the organization.

Dynamic system . A system that always is in a state from which there exist
a lawful transition.

Static system . A system that is not dynamic is called static.

D.8 Social Construction

Definitions of terms from social construction theory as they are used in the
book are given here. The definitions are based on [136].

Local reality . The local reality of a person is the way the person perceives
the world that he or she acts in.

In addition to the persons explicit and tacit knowledge this also includes
feelings and values of the person.

Ezxternalization . The enactment of Iocal reality. The most important ways
social actors externalize their local reality, are to speak and to construct
languages, artifacts such as models, and institutions such as rules.

Organizational reality . That which guides and controls persons actions in
an organization.

Internalization . Making sense out of the actions, institutions, artifacts etc.
in the organization, and making this organizational reality part of the indi-
vidual local reality of a person.

Organizational closure . A process of social construction where the actors
keep reproducing the same organizational reality.

D.9 Methodology

The terms underneath are defined here in the context of conceptual modeling
for CIS-support in organizations.

342 D. Terminology

Conceptual modeling . The activity of constructing conceptual models.

Audience . The actors that need to relate to the conceptual models con-
structed during conceptual modeling

Method . A method is a set of rules for creating models with a language.

Approach . An approach consists of a non-empty set of semi-formal or for-
mal languages and a number of rules for using these languages to construct
models.

(Model) verification . The process of assuring whether a model, created
according to a certain approach, conforms to the rules of necessity of the
language used, or has the expected semantic.

(Model) validation . The process of assuring that a model corresponds to the
explicit knowledge of those social actors which are the source of the model .
Whereas verification is potentially decidable, validation is not so, one can
never be 100% certain that the externalization in the form of a conceptual
model correspond to the local reality of an individual. Even though, validation
is a useful activity, due to the possibility for falsification, i.e. one can say that
a model do not correspond to one’s internal reality.

(Model) transformation . A process where a model written in a language is
transformed into another model in the same language.

Statement insertion . A transformation where the resulting model contains
statements that are not contained in the original model.

Statement deletion . A transformation where the resulting model do not
contain statements that are contained in the original model.

Syntactically valid statement deletion . A statement deletion resulting in a
model being conformant to the syntax of the language the model is written
in.

(Model) layout modification . Transforming a model into another model
containing the same statements.

(Model) filtering . Transforming a model into another model containing a
subset of the statements of the original model.
A model filtering consist of a set of statement deletions.

Syntactically valid (model) filtering . Model filtering resulting in a model
being conformant to the syntax of the language of the model.

(Model) translation . A process where a model written in a language is
transformed into another model written in a (set of) different language(s).

Rephrasing . A transformation where some of the implicit statements of a
model are made explicit.

Paraphrasing . A translation where the involved languages are textual.

D.9 Methodology 343

Visualization . A translation where the source language is textual, and the
target language is diagrammatic.

Code-generation . A computer-supported translation where the target lan-
guage have an executional semantics for which there exist tool for execution.

Complete translation . A translation where all statements in the source
model is also contained in the target model.

Valid translation . A translation in which all statements in the target model
is also contained in the source model.

Prototype . An executable model of (parts of) an information system which
emphasizes specific aspects of that system.

Development of an application system in an organization . The process of
producing a new application system in the organization based on the current
OIS and the knowledge of internal and potentially external actors.

Development is divided into two categories.

— Development of replacement systems being application systems that re-
place existing application systems, and offer the same functionality as the
already existing application systems.

— Development of application systems covering functional areas that are not
currently supported by the existing COIS.

Maintenance of an application system in an organization . The process of
creating an updated version of an application system used in the organization
through a temporally ordered set of lawful transitions based on an existing
application system and the knowledge of internal and potentially external
actors.

Corrective maintenance . Maintenance performed to identify and correct
processing failures, performance failures and implementation failures in an
application system.

Adaptive maintenance . Maintenance performed to adapt application sys-
tems to the changes among the supporting technical actors of the application
system.

Perfective maintenance . Maintenance performed to enhance performance,
change or add new functionality, or improve future maintainability of the
application system. Perfective maintenance is divided into functional and
non-functional perfective maintenance based on the effects of the per-
formed changes. Functional changes are changes to the functions offered by
the application system or said differently, how users can potentially increase
their knowledge using the application system. Non-functional changes im-
plies changes where the quality features of the application system and other
features being important for the developer and maintainer of the application
system such as modifiability are improved.

344 D. Terminology

Functional development . Development or maintenance where changes in the

application system increases the functional coverage of the portfolio of the
organization. This includes development of new application systems which
covers areas which are not covered by the existing COIS, and also includes
functional perfective maintenance.

Functional maintenance . Work made to sustain the functional coverage
of the portfolio of the organization. This includes the three other types of
maintenance, but also includes the development of replacement systems.

Devtenance in an organization . The process of producing an updated ver-
sion of the COIS through a temporally ordered set of lawful transitions based
on the existing OIS and the knowledge of internal and potentially external
actors.

Methodology . A system of rules, approaches, and computational actors to
aid development and/or maintenance of application systems.

D.10 Abbreviations

This section contains a set of abbreviations used in the book. These are listed
here in full, although we are not giving any further explanation of the term.

4GL . 4. generation language.

ABC . Actor, bank, channel (in ABC-models).
ABC . Alle bidrar til consensus (in ABC-method).
AD . Actor dependency.

ALBERT . Agent-oriented language for building and eliciting real-time re-
quirements.

AM . Actor model.

ARIES . Acquisition of requirements and incremental evolution of specifi-
cations.

BNF' . Backus-Naur Form.
BNM . Behavioral network model.
CASE . Computer aided software engineering.

CATWOE . Customer, actor, transformation, weltanschauung, owner, en-
vironment,.

CFG . Context-free phrase grammar.
CFP . Call for papers.

CIM . Computer integrated manufacturing.

D.10 Abbreviations 345

CIP . Canonical input port.

CML . Conceptual modeling language.

COISIR . COIS investigation report.

COP . Canonical output port.

CR . Change request.

CRC . Camera ready copy.

CSCW . Computer supported cooperative work.
DAIDA . Development of advanced interactive data intensive applications.
DBMS . Data base management system.

DND . Den norske dataforening.

DRL . Deontic rule language.

DSM . Domain structure model.

ECML . Executable conceptual modeling language.
EDFD . Entity data flow diagrams.

EIS . Existing information system.

ER . Entity relationship.

ERAE . Entity, relationship, attribute, event.

ERL . External rule language.

ERT . Entity relationship time.

ESPRIT . European strategic programme for research and development in
information technology.

F3 . From fuzzy to formal.

FCIS . Future CIS.

FG . Functional grammar.

FRISCO . Framework for information systems concepts.
FSM . Finite state machine.

GSM . Generic semantic model.

HCI . Human computer interface.

HOQ . House of quality.

IBIS . Issue based information systems.
ICASE . Integrated CASE.

IDT . Institutt for datateknikk og telematikk.

346 D. Terminology

IFIP . International federation of information processing.
ISO . International standards organization.

JAD . Joint application design/development.

JSD . Jackson System Development.

NATURE . Novel approaches to theories underlying requirements engineer-
ing.

NFR . Non-functional requirement.

NTH . Norges teknisk hgyskole.

OMT . Object modeling technique.

ONER . Our new ER modeling language.

00 . Object-oriented.

OO0OA . Object-oriented analysis.

00D . Object-oriented design.

OORASS . Object-oriented role analysis, synthesis, and structuring.
PD . Participatory design.

PID . Process interaction diagram.

PLD . Process life description.

PPM . Process port modeling.

PPP . Phenomena, process, program.

RDD . Responsibility driven design.

RST . Rhetorical structure theory.

SAMPO . Speech act based office modeling approach.
SA/RT . Structured analysis, real time.

SASD . Structured analysis, Structured Design.

SCM . Software configuration management.

SD . Standard deviation.

SDL . Semantic data language.

SQL . Structured query language.

SSADM . Structured systems analysis and design method.
STD . State transition diagrams.

SSM . Soft systems methodology.

UDD . User interface dialog description.

UID . User interface description.

UIP . User interface presentation.
VDM . Vienna design method.

References

13.

14.

15.

16.

17.

. S. Abu-Hakima and F. Oppacher. Improving explanations in knowledge-based
systems: RATIONALE. Knowledge Acquisition, 2(4):301-343, 1990.

. M. Ader, G. Lu, P. Pons, J. Monguio, L. Lopez, G. De Michelis, M. A.

Grasso, and G. Vlondakis. Woorks, an object-oriented workflow system

for offices. Technical report, ITHACA technical report available from

ftp://cui.unige.ch/OO-articles/ITHACA /WooRKS, 1994.

A. V. Aho, R. Sethi, and J. D. Ullman. Compiler : Principles, Techniques and

Tools. Addison-Wesley, 1986.

M. Alavi. An assessment of the prototyping approach to information systems

development. Communications of the ACM, 27(6):556-563, June 1984.

M. Alford. Software Requirements Engineering Methodology (SREM) at the

Age of Eleven - Requirements Driven Design, chapter 11.

J. Allwood and L. G. Andersson. Semantik (In Swedish). Institute of Linguis-

tics, University of Gothenburg, 1976.

R. Andersen. A Configuration Management Approach for Supporting Cooper-

ative Information System Development. PhD thesis, IDT, NTH, Trondheim,

Norway, 1994.

R. Andersen, J. A. Bubenko jr., and A. Sglvberg, editors. Proceedings of the

Third International Conference on Advanced Information Systems Engineering

(CAiSE’91), Trondheim, Norway, May 1991. Springer-Verlag.

Andersen Consulting. Method/1, System Development Management, 1995.

. R. S. Arnold and D. A. Parker. The dimensions of healthy maintenance.
In Proceedings of the 6th International Conference on Software Engineering
(ICSE), pages 10-17. IEEE Computer Society Press, September 13-16 1982.

. Ascent Logic Corporation. RDD-100 Requirements Driven Development, 1993.

P. Atzeni and R. Torlone. A metamodel approach for the management of mul-

tiple models and the translation of schemas. Information Systems, 18(6):349—

362, 1993.

J. H. August. Joint Application Design: The Group Session Approach to Sys-

tem Design. Yourdon Press, 1991.

E. Auraméki, R. Hirschheim, and K. Lyytinen. Modelling offices through

discourse analysis: The SAMPO approach. The Computer Journal, 35(4):342—

352, 1992.

J. L. Austin. How to do things with words. Harvard University Press, Cambrige

MA, 1962.

D. E. Avison and A. T. Wood-Harper. Multiview: An Ezploration in Informa-

tion Systems Development. Blackwell, Oxford, England, 1990.

N. A. Baas. Hierarchical systems. Foundations of a mathematical theory and

application. Technical report, Department of mathematics, The university of

Trondheim, Norway, 1976.

348 References

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

. S. C. Bailin. An object-oriented requirements specification method. Commu-
nications of the ACM, 32(5):608-623, May 1989.

R. Balzer. A 15 year perspective on automatic programming. IEEE Transac-
tions on Software Engineering, SE-11(11):1257-1268, November 1985.

R. M Balzer, N. M. Goldman, and D. S. Wile. Operational specifications as
the basis for rapid prototyping. ACM SIGSOFT Software Engineering Notes,
7(5):3-16, December 1982.

V. R. Basili. Viewing maintenance as reuse-oriented software development.
IEEE Software, 7(1):19-25, January 1990.

A. Basu and R. Ahad. Using a Relational Database to Support Explanation
in a Knowledge-Based System. IEEE Transactions on Knowledge and Data
Engineering, 4(6):572-581, December 1992.

G. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for draw-
ing graphs: An annotated bibliography. Technical report, Brown University,
anonymous ftp to wilma.cs.brown.edu , /pub/papers/compgeo/gdbiblio.ps.Z,
June 1994.

K. M. Benner. The ARIES simulation component (ASC). In Proceedings
of the Eight Knowledge-Based Software Engineering Conference (KBSE’93),
September 1993.

E. Berg, J. Krogstie, and ©. Sandvold. Enhancing user participation in system
design using groupware tools. In Proceedings of IRIS’20, pages 481-500, 1997.
P. Berger and T. Luckmann. The Social Construction of Reality: A Treatise
in the Sociology of Knowledge. Penguin, 1966.

L. Bergersen. Prosjektadministrasjon i systemutvikling. Aktiviteter i planleg-
ningsfasen som pavirker suksess (In Norwegian). PhD thesis, ORAL, NTH,
Trondheim, Norway, 1990.

W. J. Black, A. G. Sutcliffe, P. Loucopoulos, and P. J. Layzell. Translation be-
tween pragmatic software development methods. In H. K. Nichols and D. Simp-
son, editors, ESEC ’87 1st European Software Engineering Conference, pages
357-365. Springer-Verlag, 1987.

B. I. Blum. A taxonomy of software development methods. Communications
of the ACM, 37(11):82-94, November 1994.

R. Blumofe and A. Hecht. Executing real-time structured analysis specifica-
tions. ACM SIGSOFT Software Engineering Notes, 13(3):1-18, July 1988.

B. Boehm, P. Bose, E. Horowitz, and M. J. Lee. Software requirements ne-
gotiation and renegotiation aids: A theory-W based spiral model. In 17th
International Conference on Software Engineering (ICSE’95), pages 243-253,
Seattle, Washington, USA, April 23-30 1995.

B. W. Boehm. A spiral model of software development and enhancement.
IEEE Computer, pages 61-72, May 1988.

D. P. Bogia. Supporting Flexible, Extensible Task Descriptions in and Among
Tasks. PhD thesis, 1995.

C. Boldyref, E. L. Burd, and R. M. Hather. An evaluation of the state of the
art for application management. In Miiller and Georges [266], pages 161-169.
G. Booch. Object Oriented Design with Applications. Benjamin/Cummings,
1991.

A. Borgida. Features of languages for the development of information systems
at the conceptual level. IEEE Software, pages 63—72, January 1985.

A. Borgida, S. Greenspan, and J. Mylopoulos. Knowledge representation as
the basis for requirements specification. IEEE Computer, 18(4):82-91, April
1985.

S. Braten. Dialogens vilkar i datasamfunnet (In Norwegian). Universitetsfor-
laget, 1983.

39

40.

41.

42.
43.
44.
45.

46.

47.

48.

49.
50.
51.

52.

53.
54.
55.
56.
. C. Cauvet, C. Proix, and C. Rolland. ALECSI: An expert system for require-

58.

59.

References 349

. R. Brea. Algebraic Specification Technologies in Object Oriented Programming
Environments. Springer-Verlag, 1991.

S. Brinkkemper. Formalisation of Information Systems Modelling. PhD thesis,
University of Nijmegen, 1990. Thesis Publishers.

F. P. Brooks Jr. No silver bullet. Essence and accidents of software engineering.
In H. J. Kugler, editor, Information Processing ’86, pages 1069-1076. North-
Holland, 1986.

M. Broy and P. Pepper. Program development as a formal activity. IEEE
Transactions on Software Engineering, 7(1):14-22, January 1981.

T. Bryant and A. Evans. OO oversold: Those objects of obscure desire. Infor-
mation and Software Technology, 36(1):35-42, January 1994.

J. A. Bubenko jr. Information modelling in the context of systems development.
In IFIP Conference, 1980. Invited paper.

J. A. Bubenko jr. On concepts and strategies for requirements and information
analysis. In Information Modelling, pages 125-169. Chartwell-Bratt Ltd., 1983.
J. A. Bubenko jr. Problems and unclear issues with hierarchical business
activity and data flow modelling. Technical Report 134, SYSLAB, Stockholm,
June 1988.

J. A. Bubenko jr, C. Rolland, P. Loucopoulos, and V. DeAntonellis. Facil-
itating fuzzy to formal requirements modelling. In Proceedings of the First
International Conference on Requirements Engineering (ICRE94), pages 154—
157, Colorado Springs, USA, April 18-22 1994. IEEE Computer Society Press.
C. V. Bullen and J. L. Bennett. Groupware in practice: An interpretation of
work experiences. In C. Dunlop and R. Kling, editors, Computerization and
Controversy : Value Conflicts and Social Choices, pages 257-287. Academic
Press, 1991.

M. Bunge. The metaphysics, epistemology, and methodology of levels. Elsevier,
New York, 1969.

G. Burrel and G. Morgan. Sociological Paradigms and Organizational Analysis.
Heinemann, 1979.

J. R. Cameron. An overview of JSD. IEEE Transactions on Software Engi-
neering, 12(2):222-240, February 1986.

M. A. M. Capretz and M. Munro. Software configuration management issues in
the maintenance of existing system. Journal of Software Maintenance, 6:1-14,
1994.

S. Carlsen. Conceptual Modeling and Composition of Flexible Workflow Models.
PhD thesis, 1998.

S. Carlsen, J. Krogstie, A Sglvberg, and O. I. Lindland. Evaluating flexible
workflow systems. Accepted at HICSS’30, 1997.

E. Carmel, R. D. Whitaker, and J. F. George. PD and joint application design:
A transatlantic comparison. Communications of the ACM, 36(4):40-48, June
1993.

R. Carnap. Meaning and Necessity. University of Chicago Press, 1947.

ments engineering. In Andersen et al. [8], pages 31-49.

P. Chaiyasut, G. Shanks, and P. M. C. Swatman. A computational archi-
tecture to support conceptual data model reuse by analogy. In H. A. Miiller
and R. J. Norman, editors, Proceedings of the Seventh International Workshop
on Computer-Aided Software Engineering (CASE’95), pages 70-79, Toronto,
Canada, July 10-14 1995. IEEE Computer Society Press.

B. Chandrasekaran, M. C. Tanner, and J. R. Josephson. Explaining control
strategies in problem solving. IEEE Ezpert, 4(1):9-24, Spring 1989.

350

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

References

A.-M. Chang and T.-D. Han. Design of an argumentaion-based support system.
In Nunamaker and Sprague [278].

P. B. Checkland. Systems Thinking, Systems Practice. John Wiley & Sons,
1981.

P. P. Chen. The entity-relationship model: Towards a unified view of data.
ACM Transactions on Database Systems, 1(1):9-36, March 1976.

L. Chung. Dealing with security requirements during the development of in-
formation systems. In Rolland et al. [315], pages 234-251.

L. Chung, P. Katalagarianos, M. Marakakis, M. Mertikas, J. Mylopoulos, and
Y. Vassiliou. From information systems requirements to designs: A mapping
framework. Information Systems, 16(4):429-461, 1991.

P. M. Churchland. A Neurocomputational Perspective. MIT Press, 1989.

W. J. Clancey. The epistemology of a rule-based expert system - a framework
for explanation. Artificial Intelligence, 20:215-251, 1983.

P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice-Hall, Englewood
Cliffs, first edition, 1990.

D. Coleman, F. Hayes, and S. Bear. Introducing objectcharts or how to use
statecharts in object-oriented design. IEEE Transactions on Software Engi-
neering, 18(1):9-18, January 1992.

D. L. Coleman and A. L. Baker. Deliberations on Kung’s process interface
modeling. The Journal of Systems and Software, pages 193-198, 1991.

J. Conklin and M. J. Begeman. gIBIS: A hypertext tool for exploratory policy
discussion. ACM Transactions on Office Information Systems, 6(4):303-331,
1988.

J. L. Connell and L. B. Shafer. Structured rapid prototyping - An Evolutionary
Approach to Software Development. Prentice Hall, 1989.

AMADEUS consortium. The AMADEUS Project: Final Report. ESPRIT
report, June 1987.

R. J. Costello and D-B. Liu. Metrics for requirements engineering. Journal of
Systems and Software, 29(1):39-63, April 1995.

T. G. Cummings and E. F. Huse. Organization Development and Change.
West, 1989.

B. Dahlbom. The idea that reality is socialy constructed. In Floyd et al. [121],
pages 101-126.

R. Dale, C. Mellish, and M. Zock, editors. Current Research in Natural Lan-
guage Generation. Academic Press Limited, 1990.

H. Dalianis. A method for validating a conceptual model by natural language
discourse generation. In Loucopoulos [242], pages 425—444.

R. Darimont and A. van Lamsweerde. Formal requirement patterns for goal-
driven requirements elaboration. In Proceedings of SIGSOFT’96, pages 179—
190, 1996.

A. M. Davis. A comparison of techniques for the specification of external
system behavior. Communications of the ACM, 31(9):1098-1115, September
1988.

A. M. Davis. Software Requirements Analysis € Specification. Prentice-Hall,
1990.

A. M. Davis, S. Overmeyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh,
G. Kincaid, G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M. Theofanos.
Identifying and measuring quality in a software requirements specification.
In Proceedings of the First International Software Metrics Symposium, pages
141-152, 1993.

R. Davis and J. King. An overview of production systems. In E. W. Elcock
and D. Michie, editors, Machine Intelligence, pages 300-332. 1977.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

98.

99.

100.

101.

102.

References 351

G. de Michelis and M. A. Grasso. Situating conversations within the lan-
guage/action perspective: The Milan conversation model. In Proceedings of the
ACM 199/ Conference on Computer Supported Cooperative Work (CSCW’9/),
pages 89-100, Chapel Hill, North Carolina, USA, October 22-26 1994.

G-J. de Vrede. Support for collaborative design: Animated electronic meetings.
In Proceedings of the Thirtieth Annual Hawaii International Conference on
System Sciences (HICCS’97): Volume II Information Systems- Collaboration
Systems and Technology, pages 376-385. IEEE Computer Society Press, 1997.
J. K. Debenham and G. M. McGrath. The description in logic of large com-
mercial data bases: A methodology put to the test. In Proceedings of the Fifth
Australian Computer Science Conference, pages 12-21, 1982.

S. M. Dekleva. Delphi study of software maintenance problems. In Proceedings
of the Conference on Sofware Maintenance (CSM’92), pages 10-17, 1992.

S. M. Dekleva. The influence of the information systems development approach
on maintenance. MIS Quarterly, pages 355-372, September 1992.

H. S. Delugach. Specifying multiple-viewed software requirements with con-
ceptual graphs. Journal of Systems and Software, 19:207-224, 1992.

P. J. Denning. What is software quality. Communications of the ACM,
35(1):13-15, January 1992.

Y. Deville. Logic Programming - Systematic Program Development. Interna-
tional Series in Logic Programming. Addison Wesley, 1990.

J. Dietz. Integrating management of human and computer resources in task
processing organizations: A conceptual view. In Nunamaker and Sprague [277],
pages 723-733.

J. L. G. Dietz and G. A. M. Widdershoven. A comparison of the lingusitic
theories of Searle and Habermas as a basis for communication supporting sys-
tems. In R. P. van Riet and R. A. Meersman, editors, Linguistic Instruments
in Knowledge Engineering, pages 121-130. Elsevier, 1992.

F. Dignum, T. Kemme, W. Kreuzen, R. Weigand, and R. P. van de Riet. Con-
straint modelling using a conceptual prototyping language. Data € Knowledge
Engineering, (2):213-254, 1987.

F. Dignum and H. Weigand. Communication and deontic logic. In R. Wieringa
and R. Feenstra, editors, Working papers of the International Workshop on
Information Systems - Correctness and Reuseability (IS-CORE ‘9/), 1994.

E. Downs, P. Clare, and I. Coe. Structured Systems Analysis and Design
Method: Application and Context. Prentice Hall, 1988.

D. R. Dowty et al. Introduction to Montague Semantic. Reidel, 1981.

. K. G. Doyle, J. R. G. Wood, and A. T. Wood-Harper. Soft systems and

systems engineering: On the use of conceptual models in information system
development. Journal of Information Systems, 3(3):187-198, 1993.

E. Dubois, P. Du Bois, and M. Petit. Elicitating and formalising requirements
for C.ILM. information systems. In Rolland et al. [315], pages 253-274.

E. Dubois, P. Du Bois, and M. Petit. ALBERT: An agent-oriented language
for building and elicitating requirements for real-time systems. In Nunamaker
and Sprague [277], pages 713-722, Volume 4.

S. Easterbrook. Domain modelling with hierarchies of alternative viewpoints.
In Proceedings of the IEEE International Symposium on Requirements Engi-
neering (RE’98), pages 65-72, San Diego, USA, January 4-6 1993.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations
and Initial Semantics. Springer, 1985.

M. Elden and M. Levin. Co-generative learning. Bringing participation into
action research. In W. F. Whyte, editor, Participative Action Research. Sage,
1991.

352

103

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

References

. C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware, some issues and experi-
ences. Communications of the ACM, 34(1):39-58, January 1991.

H. C. Ellis and R. R. Hunt. Fundamentals of Cognitive Psychology. Brown
and Benchmark, Madison, Wisconsin, 1993. 5th edition.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. The
Benjamin/Cummings Publishing Company, Inc., 1989.

D. W. Embley, R. B. Jackson, and S. N. Woodfield. OO system analysis: Is
it or isn’t it? IEEE Software, 12(3):19-33, July 1995.

M. Emery. The theory and practice of search conferences. In Proceedings from
the Einar Thorsrud Memorial Symposium and Workshop, Oslo, Norway, June
15-19 1987.

F. Fabbrini, M. Fusani, V. Gervasi, S. Gnesi, and S. Ruggieri. Achieving qual-
ity in natural language requirements. In Proceedings of the 11th International
Software Quality Week (QW98), San Francisco, USA, May 26-29 1998.

E. D. Falkenberg, W. Hesse, P. Lindgreen, B. E. Nilsson, J. L. Han Oei,
C. Rolland, R. K. Stamper, F. J. M. Van Assche, A. A. Verrijn-Stuart, and
K. Voss. FRISCO: A Framework of Information System Concepts. Technical
report, IFIP WG 8.1, December 1997.

E. D. Falkenberg, R. van der Pols, and Th. P. van der Weide. Understanding
process structure diagrams. Information Systems, 16(4):417-428, 1991.

B. A. Farshchian, J. Krogstie, and A. Sglvberg. Integration of user interface
and conceptual modeling. In Proceedings of the ERCIM workshop: Towards
User Interfaces for All: Current efforts and future trends, Heraklion, Crete,
Greece, October 30-31 1995. ICS-FORTH.

M. S. Feather. Mappings for Rapid Prototyping. ACM SIGSOFT Software
Engineering Notes, 7(5):17-24, December 1982.

M. S. Feather. Requirements engineering - Getting right from wrong. In A. Van
Lamsweerde and A. Fugetta, editors, ESEC’91 — 8rd European Software En-
gineering Conference, pages 485-488, Milan, Italy, October 1991. Springer-
Verlag.

M. S. Feather. Requirement reconnoitering at the juncture of domain and in-
stance. In Proceedings of the IEEE International Symposium on Requirements
Engineering (RE’93), pages 73-76, San Diego, USA, January 4-6 1993.

A. Feller and R. Rucker. Meta-modeling systems analysis primitives. In Con-
ceptual Structures: Current Research and Practice, chapter 10, pages 201-220.
Ellis Horwood, 1992.

J. Fiadeiro et al. Describing and structuring objects for conceptual schema
development. P. Loucopoulas (eds): Conceptual Modelling, Databases and
CASE, 1991.

N. V. Findler, editor. Associative Networks: Representation and Use of Knowl-
edge by Computer. Academic Press, 1979.

F. Flores, M. Graves, B. Hartfield, and T. Winograd. Computer systems
and the design of organizational interaction. ACM Transactions on Office
Information Systems, 6(2):153-172, April 1988.

C. Floyd. A systematic look at prototyping. In R. Budde et al., editor,
Approaches to Prototyping, pages 1-18, Berlin, 1984. Springer-Verlag.

C. Floyd, F-M. Reisin, and G. Schmidt. STEPS to software development with
users. In C. Ghezzi and J. A. McDermid, editors, 2nd European Software Engi-
neering Conference (ESEC’89), pages 48-63, University of Warwick, Coventry,
England, September 1989.

C. Floyd, H. Ziillighoven, R. Budde, and R. Keil-Slawik, editors. Software
Development and Reality Construction. Springer Verlag, 1991.

122

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

References 353

. W. Frakes and C. Terry. Software reuse: Metrics and models. ACM Computing
Surveys, 28(2):415-435, June 1996.

C. Francalanci and B. Pernici. View integration: A survey of current develop-
ments. Technical Report 93-053, Politecnico de Milano, Milan, Italy, 1993.

E. Francik, S. E. Rudman, D. Cooper, and S. Levine. Putting innovation to
work: Adoption strategies for multimedia communication systems. Communi-
cations of the ACM, 34(12):52-63, December 1991.

M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Informal and formal require-
ments specification languages: Bridging the gap. IEEE Transactions on Soft-
ware Engineering, 17(5):454-466, May 1991.

Personal communication with the FRISCO task group, March 1995.

A. Gal, G. Lapalme, P. Saint-Dizier, and H. Somers. Prolog for Natural Lan-
guage Processing. John Wiley & Sons, New York, USA, 1991.

H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: A deductive
approach. Computing Surveys, 16(2):153-185, June 1984.

C. Gane and T. Sarson. Structured Systems Analysis: Tools and Techniques.
Prentice-Hall, 1979.

H. Garfinkel. Studies in Ethnomethodology. Prentice Hall, 1967.

D. Garlan, C. Krueger, and B. Staudt. A structural approach to the mainte-
nance of structure-oriented environments. ACM SIGPLAN Notices, 22(1):160—
170, January 1987.

D. G. Gause and G. M. Weinberg. Ezploring Requirements: Quality before
Design. 1989.

M. R. Genesereth and S. T. Ketchpel. Software agents. Communication of
the ACM, 37(7):48-53, July 1994.

M. R. Genesereth and J. N. Nilsson. Logical Foundations of Artificial Intelli-
gence. Morgan Kaufman, 1988.

A. Gill. Applied Algebra for the Computer Sciences. Prentice-Hall, 1976.

R. Gjersvik. The Construction of Information Systems in Organization: An
Action Research Project on Technology, Organizational Closure, Reflection,
and Change. PhD thesis, ORAL, NTH, Trondheim, Norway, 1993.

R. L. Glass. We have lost our way. Journal of Systems and Software, 18(2):111—
112, May 1992.

R. L. Glass and I. Vessey. Contemporary application-domain taxonomies.
IEEE Software, 12(3):63-76, July 1995.

B. C. Glasson. Model of system evolution. Information and Software Tech-
nology, 31(7):351-356, September 1989.

J. A. Goguen. Parameterized Programming. IEEE Transactions on Software
Engineering, SE-12(5):528-543, September 1984.

J. A. Goguen and C. Linde. Techniques for requirements elicitation. In Pro-
ceedings of the IEEE International Symposium on Requirements Engineering
(RE’93), pages 152-164, 1993.

G. Goldkuhl and K. Lyytinen. A language action view of information sys-
tems. In Proceedings of the International Conference on Information Systems
(IC1S5°82), pages 13-29. 1982.

G. Goldkuhl and K. Lyytinen. Information systems specification as rule recon-
struction. In Th. M. A. Bemelmans, editor, Beyond Productivity: Information
Systems Development for Organizational Effectiveness, pages 79-94. North-
Holland, 22-24 August 1983.

H. Gomaa. The impact of rapid prototyping on specifying user requirements.
ACM SIGSOFT - Software Engineering Notes, 8(2):17-28, April 1983.

354

145.

146.

147.
148.

149.
150.

151.

152.

153.

154.
155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

References

H. Gomaa and D. B. H. Scott. Prototyping as a tool in the specification of
user requirements. In The Proceedings of the 5th International Conference on
Software Engineering, pages 333-342, 1981.

E. S. Greenberg. The consequences of worker participation: A clarification of
the theorethical litterature. Social Science Quarterly, 56(2), 1975.

Grobstein. Hierarchical order and neogenesis. In Pattee [299].

HOOD Working Group. HOOD reference manual. Technical Report
WME/89-173/JB, European Space Agency, September 1989.

E. G. Guba and Y. S. Lincoln. Fourth Generation Evaluation. Sage, 1989.

J. A. Gulla. Code generation in PPP - documentation and evaluation. Internal
report, IDT, NTH, Trondheim, Norway, 1991.

J. A. Gulla. Ezplanation Generation in Information Systems Engineering.
PhD thesis, IDT, NTH, Trondheim, Norway, September 1993.

J. A. Gulla, O. I. Lindland, and G. Willumsen. PPP - An integrated CASE
environment. In Andersen et al. [8], pages 194-221.

M. R. Gustafsson, T. Karlsson, and J. A. Bubenko jr. A declarative approach
to conceptual information modelling. In Olle et al. [285], pages 93-142.

J. Habermas. The Theory of Communicative Action. Beacon Press, 1984.

J. Hagelstein. A declarative approach to information systems requirements.
Knowledge Based Systems, 1(4):211-220, 1988.

J. Hagelstein and A. Rifaut. A comparison of semantic models for collections.
Technical report, Philips Research Lab, Brussels, Belgium, 1987.

U. Hahn, M. Jarke, and T. Rose. Group work in software projects: Integrated
conceptual models and collaboration tools. In S. Gibbs and A. A. Verrijn-
Stuart, editors, Multi- User Interfaces and Applications: Proceedings of the IFIP
WG 8.4 Conference on Multi-User Interfaces and Applications, pages 83—-102.
North-Holland, 1990.

G. F. Haland. SIMSPEC - Simulating a PPP specification. Master’s thesis,
IDT, NTH, Trondheim, Norway, 1991.

D. P. Hale, D. A. Haworth, and S. Sharpe. Empirical software maintenance
studies during the 1980s. In Proceedings of the Conference on Software Main-
tenance (CSM’90), pages 118-123. IEEE Computer Society Press, 1990.

M. Hammer and D. McLeod. Database description with SDM: A semantic
database model. ACM Transactions on Database Systems, 6(3), September
1981.

D. Harel. Statecharts : A visual formalism for complex systems. Science of
Computer Programming, (8):231-274, 1987.

D. Harel. Biting the silver bullet: Toward a brighter future for system devel-
opment. IEEE Computer, January 1992.

D. Harel and E. Gery. Executable object modelling with statecharts. In 18th
International Coference on Software Engineering (ICSE’96), pages 246-257,
Berlin, Germany, March 25-29 1996.

D. Harel, H. Lachover, A. Naamed, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. STATEMATE: a working environment for
the development of complex reactive systems. IEEE Transactions on Software
Engineering, 16(4):403-414, April 1990.

W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure
objects). In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’93), pages 411-428, 1993.
F. Heller. Participation and competence: A necessary relationship. In R. Rus-
sel and V. Rus, editors, International Handbook of Participation in Organiza-
tions, pages 265—281. 1991.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

References 355

P. Henderson. Functional programming, formal specification, and rapid proto-
typing. IEEE Transactions on Software Engineering, SE-12(2):241-250, Febru-
ary 1986.

J. Hewett and T. Durham. CASE: The Next Steps. Technical report, OVUM,
1989.

R. A. Hirschheim. A participative approach to implementing office automa-
tion. In Proceedings from the Joint International Symposium on Information
Systems, pages 306-329, Sydney, Australia, April 1984.

R. A. Hirschheim and H. K. Klein. Four paradigms of information systems
development. Communications of the ACM, 32(10):pages 1199-1216, October
1989.

K. K. Holgeid. Utvikling og vedlikehold av it-systemer i norske bedrifter (in
norwegian). Master’s thesis, IFI, UIO, Oslo, Norway, April 1999.

P. Holm. The COMMODIOUS method: Communication modelling as an aid
to illustrate the organizational use of software. In Proceedings of the 6th In-
ternational Conference on Software Engineering and Knowledge Engineering
(SEKE’94), pages 10-19, Jurmala, Latvia, June 21-23 1994. Knowledge Sys-
tems Institute.

G. M. Hgydalsvik and G. Sindre. On the purpose of object-oriented analysis.
In A. Paepcke, editor, Proceedings of the Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’93), pages 240—
255. ACM Press, September 1993.

R. Hull and R. King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3):201-260, 1987.

R. Hull and R. King. A tutorial on semantic database modellig. In Research
Foundations in Object-oriented and Semantic Database Systems. Prentice Hall,
1990.

J. Iivari. Hierarchical spiral model for information system and software devel-
opment. Part 1: Theoretical background. Information and Software Technol-
0gy, 32(6):386-399, July/August 1990.

J. Tivari. Hierarchical spiral model for information system and software de-
velopment. Part 2: Design process. Information and Software Technology,
32(7):450-458, September 1990.

J. Iivari. Object-orientation as structural, functional and behavioural mod-
elling: A comparison of six methods for object-oriented analysis. Information
and Software Technology, 37(3):155-163, 1995.

J. Tivari, K. Lyytinen, and M. Rossi, editors. Proceedings of the 7th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’95),
Jyvéskyld, Finland, June 12-16 1995. Springer Verlag.

H. Ishii and N. Miyake. Toward an open shared workspace: Computer and
video fusion approach of teamworkstation. Communications of the ACM,
34(12):36-50, December 1991.

M. L. Jaccheri and R. Conradi. Techniques for process model evolution in
EPOS. IEEE Transactions on Software Engineering, 19(12):1145-56, Decem-
ber 1993.

B. E. Jacobs. On database logic. Journal of the ACM, 29(2):310-332, April
1982.

S. Jacobs, M. Jarke, and K. Pohl. Report on the first international IEEE
symposium on requirements engineering (RE’93) San Diego, January 4-6 1993.
Automated Software Engineering, 1(1):129-132, 1994.

I. Jacobson et al. Object-Oriented Software Engineering — A Use Case Driven
Approach. Addison-Wesley, Reading, MA, 1992.

356

185

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

References

. James Martin Associates PLC. TEM - Information Engineering Methodology
- Introduction, 1987.

M. Jarke, J. A. Bubenko jr, C. Rolland, A. Sutcliffe, and Y. Vassiliou. Theo-
ries underlying requirements engineering: An overview of NATURE at genesis.
In Proceedings of the IEEE International Symposium on Requirements Engi-
neering (RE’93), pages 19-31, 1993.

M. Jarke, J. Mylopoulos, J. W. Schmidt, and Y. Vassiliou. DAIDA: An envi-
ronment for evolving information systems. ACM Transactions on Information
Systems, 10(1):1-50, 1992.

P. Johanneson. Schema transformations as an aid in view integration. In
Rolland et al. [315], pages 71-92.

W. L. Johnson and M. S. Feather. Using evolution transformations to con-
struct specifications. In M. R. Lowry and R. D. McCartney, editors, Automat-
ing Software Design, pages 65-91. The MIT Press, California, USA, 1991.

W. L. Johnson, M. S. Feather, and D. R. Harris. Representation and presenta-
tion of requirements knowledge. IEEE Transactions on Software Engineering,
18(10):853-869, October 1992.

A. J. I. Jones and I. Pérn. Ideality, sub-ideality and deontic logic. Synthese,
65:275-290, 1985.

A. J. I Jones and I. Pérn. “ought” and “must”. Synthese, 66:89-93, 1986.
J. R. Jorgensen, O. T. Kogstad, and H. Nilsen. Rapid prototyping of user inter-
faces in the I-CASE environment PPP. Master’s thesis, IDT, NTH, Trondheim,
Norway, 1991.

M. Jgrgensen. Empirical studies of Software Maintenance. PhD thesis, De-
partment of Informatics, University of Oslo, Oslo, Norway, 1994.

M. Jgrgensen and A. Maus. A case study of software maintenance tasks. In
Proceedings of Norsk Informatikk Konferanse 1993 (NIK’93), pages 101-112,
Halden, Norway, 1993.

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-oriented
specification of information systems: The Trorr language. Technical report,
Technische Universitat Braunschweig, 1991.

R. Jungclaus, G. Saake, and C. Sernadas. Formal specification of object sys-
tems. In S. Abramsky and T. Maibaum, editors, Proceedings of TAPSOFT 91,
pages 60-82, Volume 2, Brighton, UK, 1991. Springer Verlag (LNCS 651).

J. Kalita. Automatically generating natural language reports. International
Journal of Man-Machine Studies, 30(4):399-423, April 1989.

E.-A. Karlsson (ed.). Software Reuse: A Holistic Approach. John Wiley &
Sons, 1995.

M. Keil and E. Carmel. Customer-developer links in software development.
Communications of the ACM, 38(5), May 1995.

S. Khoshafian and R. Abnous. Object Orientation: Concepts, Languages,
Databases, User interfaces. Wiley, 1990.

S. Khosla, T. S. E. Maibaum, and M. Sadler. Database specification. In
T. B. Steel and R. Meersman, editors, Proceedings of the IFIP Conference on
Database Semantics (DS-1), 1986.

H. Klein and K. Lyytinen. Towards a new understanding of data modelling.
In Floyd et al. [121], pages 203-217.

M. D. Konrad. Functional Prototyping with Proto, chapter 12, pages 378-398.
Van Nostrand Reinhold, 1989. Edited by Peter A. Ng and Raymond T. Yeh.
W. Kozaczynski and A. Kuntzmann-Combelles. What it takes to make OO
work. IEEE Software, 10(1):20-23, January 1993.

J. Krogstie. Conceptual modeling in Tempora. Master’s thesis, IDT, NTH,
Trondheim, Norway, 1991.

207

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

References 357

. J. Krogstie. Conceptual Modeling for Computerized Information Systems Sup-
port in Organizations. PhD thesis, IDT, NTH, Trondheim, Norway, November
21 1995.

J. Krogstie. Goal-oriented modeling of information systems. In Proceed-
ings of the Seventh International Conference on Computing and Information
(ICCI’95), pages 983-1007, Peterborough, Canada, July 5-8 1995.

J. Krogstie. On the distinction between functional development and functional
maintenance. Journal of Software Maintenance, 7:383-403, 1995.

J. Krogstie, O. I. Lindland, and G. Sindre. Defining quality aspects for concep-
tual models. In Proceedings of the IFIP8.1 working conference on Information
Systems Concepts (ISCO3): Towards a Consolidation of Views, Marburg, Ger-
many, March 28-30 1995.

J. Krogstie, O. I. Lindland, and G. Sindre. Towards a deeper understanding
of quality in requirements engineering. In Iivari et al. [179], pages 82-95.

J. Krogstie, P. McBrien, R. Owens, and A. H. Seltveit. Information systems
development using a combination of process and rule based approaches. In
Andersen et al. [8], pages 319-335.

J. Krogstie and G Sindre. Utilizing deontic operators in information systems
specification. Issued to Requirements Engineering Journal.

J. Krogstie and G. Sindre. Extending a temporal rule language with deontic
operators. In Proceedings from the 6th International Conference on Software
Engineering and Knowledge Engineering (SEKE’94), pages 314-321. IEEE,
June 21-23 1994.

J. Krogstie and A. Sglvberg. Software maintenance in Norway: A survey
investigation. In Miiller and Georges [266], pages 304-313. Received ”Best
Paper Award”.

C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131-183,
June 1992.

C. H. Kung. A temporal framework for database specification and verification.
In Proceedings of the tenth International Conference on Very Large Data Bases
(VLDB’84), pages 91-99, Singapore, August 27-31 1984.

C. H. Kung. A Temporal Framework for Information Systems Specification
and Verification. PhD thesis, IDT, NTH, Trondheim, Norway, 1984.

C. H. Kung. Object subclass hierarchy in SQL: A simple approach. Commu-
nication of the ACM, 33(7):117-125, 1990.

C. H. Kung. Process interface modeling and consistency checking. The Journal
of Systems and Software, pages 185-191, 1991.

M. Kyng. Designing for cooperation: Cooperating for design. Communications
of the ACM, 34(12):65-73, December 1991.

V. Lalioti. Animation for validation of business system specification. In Pro-
ceedings of the Thirtieth Annual Hawaii International Conference on System
Sciences (HICCS’97): Volume II Information Systems- Collaboration Systems
and Technology. IEEE Computer Society Press, 1997.

B. Langefors. Theoretical Analysis of Information Systems. Studentliteratur,
Auerbach, first edition, 1973.

P. J. Layzell and L. Macauley. An investigations into software maintenance -
perception and practices. Software Maintenace: Research and Practice, 6:105—
119, 1994.

R.-J. Lea and C.-G. Chung. Rapid prototyping from structured analysis:
Executable specification approach. Information and Software Technology,
32(9):589-597, November 1990.

C. H. LeDoux and D. S. Parker Jr. Saving traces for ADA debugging. In Ada
In Use, Proceedings of The Ada International Conference, pages 97-108, 1985.

358

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

References

S. Lee and S. Sluizer. An executable language for modeling simple behavior.
IEEFE Transactions on Software Engineering, 17(6):527-543, June 1991.

M. Lefering. An incremental integration tool between requirements engineer-
ing and programming in the large. In Proceedings of the IEEE International
Symposium on Requirements Engineering (RE’93), pages 82-89. IEEE Com-
puter Society Press, 1993.

J. C. S. P. Leite and P. A. Freeman. Requirements validation through view-
point resolution. IEEE Transactions on Software Engineering, 17(12):1253-
1269, December 1991.

H. R. Lewis. Cycles of unifiability and decidability by resolution. Technical
report, Aiken Computation Laboratory, Harvard University, 1979.

H. R. Lewis. Unsolvable Classes of Quantificational Formulae. Addison-
Wesley, 1979.

P. J. Lewis. Linking soft systems methodology with data-focused information
systems development. Journal of Information Systems, 3:169-186, 1993.

X. Li. What’s so bad about rule-based programming? IEEE Software,
8(5):103,105, September 1991.

B. P. Lientz and E. B. Swanson. Software Maintenance Management. Addison
Wesley, 1980.

P. Lindgren ed. A framework of information systems concepts. Technical
report, FRISCO, May 1990.

O. L. Lindland. A Prototyping Approach to Validation of Conceptual Mod-
els in Information Systems Engineering. PhD thesis, IDT, NTH, Trondheim,
Norway, May 1993.

O. I. Lindland and J. Krogstie. Transformations in CASE tools - A compiler
view. In H. Y. Lee, T. Reid, and S. Jarzabek, editors, Proceedings of the 6th
International Workshop on Computer-Aided Software Engineering (CASE’93),
pages 287-296, Singapore, July 1993. IEEE Computer Society Press.

O. I. Lindland and J. Krogstie. Validating conceptual models by transforma-
tional prototyping. In Rolland et al. [315], pages 165-183.

O. L. Lindland, G. Sindre, and A. Sglvberg. Understanding quality in concep-
tual modelling. IEEE Software, pages 42—49, April 1994.

O. I. Lindland, G. Willumsen, J. A. Gulla, and A. Sglvberg. Prototyp-
ing in transformation-based CASE environments. In Proceedings of the 5th
International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE’93), pages 696-603, Hotel Sofitel, San Francisco Bay, USA, 1993.
Knowledge Systems Institute.

J. Lingat, P. Colignon, and C. Rolland. Rapid application prototyping - the
PROQUEL language. In F. Bancilhon and D. J. DeWitt, editors, Proceedings
of the 14th International Conference on Very Large Data Bases (VLDB‘14),
pages 206-217, 1988.

P. Loucopoulos, editor. Proceedings of the Fourth International Conference
on Advanced Information Systems Engineering (CAiSE’92). Springer-Verlag,
May 1992.

P. Loucopoulos, P. McBrien, F. Schumacker, B. Theodoulidis, V. Kopanas,
and B. Wangler. Integrating database technology, rule-based systems and tem-
poral reasoning for effective information systems: The TEMPORA paradigm.
Journal of Information Systems, 1:129-152, 1991.

P. H. Loy. A comparison of object-oriented and stuctured development meth-
ods. ACM SIGSOFT Software Engineering Notes, 15(1):44-48, January 1990.
M. D. Lubars. A general design representation. Technical Report STP-066-89,
Microelectronics and computer technology corporation (MCC), 1989.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

References 359

M. Lundeberg. The ISAC approach to specification of information systems
and its application to the organization of an IFIP working conference. In
Information Systems Design Methodologies: A Comparative Review, pages 173—
234. North-Holland, 1982.

J. Lyons. Introduction to Theoretical Linguistics. Cambridge University Press,
1968.

K. Lyytinen. A taxonomic perspective of information systems development:
Theoretical constructs and recommendations. In R. J. Boland Jr and R. A.
Hirschheim, editors, Critical Issues in Information Systems Research, chap-
ter 1, pages 3—41. John Wiley & Sons, 1987.

K. Lyytinen, P. Kerola, J. Kaipala, S. Kelly, J. Lehto, H. Liu, P. Marttiin,
H. Oinas-Kukkonen, J. Prihonen, M. Rossi, K. Smolander, V-P. Tahvanainen,
and J-P. Tolvanen. MetaPHOR: Metamodelling, principles, hypertext, objects,
and repositories. Technical Report TR-7, University of Jyviaskyld, Department
of Computer Science and Information Systems, Jyvaskyld, Finland, November
1994.

L. Macauley. Requirements capture as a cooperative activity. In Proceedings
of the First Symposium on Requirements Engineering (RE’93), pages 174-181,
1993.

N. A. Maiden and A. G. Sutcliffe. Exploiting reusable specifications through
analogy. Communications of the ACM, 35(4):55-64, April 1992.

W. C. Mann and S. A. Thompson. Rhetorical structure theory: Description
and construction of text structures. In G. Kempen, editor, Natural Language
Generation: New Results in Artificial Intelligence, Psychology, and Linguistics,
chapter 7, pages 85-95. Martinus Nijhoff Publishers, 1987.

M. A. Marsan et al, editor. Proceeding of the International workshop on Timed
Petri Nets, Torino, Italy, 1985. IEEE Computer Society Press.

P. McBrien, M. Niezette, D. Pantazis, A. H. Seltveit, U. Sundin,
B. Theodoulidis, G. Tziallas, and R. Wohed. A rule language to capture and
model business policy specifications. In Andersen et al. [8], pages 307-318.

P. Mcbrien and A. H. Seltveit. Coupling process models and business rules.
In Sglvberg et al. [349], pages 201-217.

P. McBrien, A. H. Seltveit, and B. Wangler. An entity-relationship model
extended to describe historical information. In Proceedings of CISMOD’92,
Bangalore, India, July 1992.

D. McCracken and M. Jackson. Life cycle concept considered harmful. ACM
SIGSOFT Software Engineering Notes, 7(2):29-32, April 1982.

M. P. McDonald. Quality function deployment. introducing product develop-
ment into the systems development process. In Seventh Symposium on Quality
Function Deployment, Novi, Michigan, June 1995.

C. E. McDowell and D. P. Helmbold. Debugging concurrent programs. ACM
Computing Surveys, 21(4):593-623, December 1989.

R. Medina-Mora, T. Winograd, R. Flores, and F. Flores. The action workflow
approach to workflow management technology. In Proceedings of CSCW’92,
1992.

M. D. Mesarovié¢ et al. Theory of Hierarchical, Multilevel, Systems. Academic
Press, 1970.

B Meyer. Reality: A cousin twice removed. IEEE Computer, 29(7):96-97,
July 1996.

D. L. Moody and G. G. Shanks. What makes a good data model? Evaluating
the quality of entity relationship models. In Proceedings of the 13th Interna-
tional Conference on the Entity-Relationship Approach (ER’94), pages 94-111,
Manchester, England, 1994.

360

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.
277.

278.

279.

280.

281.

282.

References

R Motschnig-Pitrik. The semantics of parts versus aggregates in
data/knowledge modeling. In Rolland et al. [315].

B. Moulin and D. Rousseau. SACD: A system for acquiring knowledge from
regulatory texts. Computers and Electrical Engineering, 20(2):131-149, 1994.
H. A. Miiller and M. Georges, editors. Proceedings of the International Con-
ference on Software Maintenance (ICSM’94). IEEE COmputer Society Press,
September 19-23 1994.

E. Mumford. Designing human systems - the ETHICS method. Technical
report, Manchester Business School, Cheshire, England, 1983.

E. Mumford. Participation - from Aristotle to today. In Th. M. A. Bemelmans,
editor, Beyond Productivity: Information Systems Development for Organiza-
tional Effectiveness, pages 95—104. North-Holland, 22-24 August 1983.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. TELOS: Represent-
ing knowledge about information systems. ACM Transactions on Information
Systems, 8(4):325-362, October 1990.

J. Mylopoulos, L. Chung, and B. Nixon. Representing and using non-
functional requirements: A process-oriented approach. IEEE Transactions on
Software Engineering, 18(6):483-497, June 1992.

J. Mylopoulos et al. A language facility for designing database intensive ap-
plications. ACM Transactions on Database Systems, 5(2), June 1980.

R. Neches, W. R. Swartout, and J. D. Moore. Enhanced maintenance and
explanation of expert systems through explicit models of their development.
IEEE Transactions on Software Engineering, 11(11):1337-1351, November
1985.

G. M. Nijssen and T. A. Halpin. Conceptual Schema and Relational Database
Design. Prentice Hall, 1989.

C. Niskier and T. Maibaum. A pluralistic knowledge-based approach to soft-
ware specification. In C. Ghezzi and J. A. McDermid, editors, ESEC’89 2nd
European Software Engineering Conference, pages 411-423. Springer Verlag,
1989.

I. Nonaka. A dynamic theory of organizational knowledge creation. Organi-
zation Science, 5(1):14-37, 1994.

W. No6th. Handbook of Semiotics. Indiana University Press, 1990.

J. F. Nunamaker and R. H. Sprague, editors. Proceedings of the
Twenty-seventh Annual Hawaii International Conference on Systems Sciences
(HICCS’27), Maui, Hawaii, US, January 4-7 1994. IEEE Computer Society
Press.

J. F. Nunamaker and R. H. Sprague, editors. Proceedings of the Twenty-eight
Annual Hawaii International Conference on Systems Sciences (HICCS’28),
Maui, Hawaii, US, January 1995. IEEE Computer Society Press.

B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for expressing
the relationships between multiple views in requirements specification. I[EEE
Transactions on Software Engineering, 20(10):760-773, October 1994.

J. L. H. Oei. A meta model transformation approach towards harmonization
in information system modelling. In Proceedings of the IFIP8.1 working con-
ference on Information Systems Concepts (ISCO3): Towards a Consolidation
of Views, Marburg, Germany, March 28-30 1995.

A. Olivé. A comparison of the operational and deductive approaches to con-
ceptual information systems modelling. In H. J. Kugler, editor, Information
Processing ’86. North-Holland, 1986.

A. Olivé. On the design and implementation of information systems from
deductive conceptual models. In Proceedings of the 14th VLDB, 1989.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.
300.

301.

302.

303.

304.

305.

306.

References 361

T. W. Olle, J. Hagelstein, I. G. MacDonald, C. Rolland, H. G. Sol, F. J. M.
van Assche, and A. A. Verrijn-Stuart. Information Systems Methodologies.
Addison-Wesley, 1988.

T. W. Olle, J. Hagelstein, I. G. Macdonald, C. Rolland, H. G. Sol, F. J. M.
van Assche, and A. A. Verrijn-Stuart. Information Systems Methodologies - A
Framework for Understanding. Addison-Wesley, 1991.

T. W. Olle, H. G. Sol, and A. A. Verrijn-Stuart, editors. Information Systems
Design Methodologies: A Comparative Review. North-Holland, 1982.

A. L. Opdahl. Performance Engineering during Information Systems Devel-
opment. PhD thesis, IDT, NTH, Trondheim, Norway, 1992.

A. L. Opdahl and G. Sindre. A taxonomy for real-world modelling concepts.
Information Systems, 19(3):229-241, April 1994.

A. L. Opdahl and G. Sindre. Facet models for problem analysis. In Tivari
et al. [179], pages 54-67.

A.L. Opdahl and G. Sindre. Representing real-world processes. In Nunamaker
and Sprague [278].

A. L. Opdahl and G. Sindre. Facet modeling: An approach to flexible and
integrated conceptual modeling. Information Systems, 22(5):291-323, 1997.
J. W. Orlikowski and D. C. Gash. Technological frames: Making sense of
information technology in organizations. ACM Transactions on Information
Systems, 12(2):174-207, 1994.

OVUM evaluates CASE products. Technical report, OVUM, 1997.

R. P. Owens and P. McBrien. TEQUEL: the TEMPORA execution language.
Technical Report E2469/1C/3.1/2/3, Imperial College, London, England, 1990.
P. Pagin. Ideas for a Theory of Rules. PhD thesis, Stockholm University,
Stockholm, Sweden, 1987.

C. L. Paris. Generation and explanation: Building an explanation facility for
the explainable expert systems framework. In Paris et al. [296], chapter 2,
pages 49-82.

C. L. Paris, W. R. Swartout, and W. C. Mann, editors. Natural Language
Generation in Artificial Intelligence and Computational Linguistics. Kluwer
Academic Publishers, 1991.

Y. Park and D. Ramjisingh. Software component base for reuse in functional
program development. In Proceedings of the Seventh International Conference
on Computing and Information (ICCI’95), pages 1022-1039, July 5-8 1995.
J. Parsons and Y. Wand. Choosing classes in conceptual modeling. Commu-
nications of the ACM, 40(6):63—69, June 1997.

H. H. Pattee, editor. Hierarchy Theory. Braziller, 1973.

M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber. Capability maturity
model, version 1.1. IEEE Software, 10(4):pages 18-27, July 1993.

J. Peckham and F. Maryanski. Semantic data models. ACM Computing
Surveys, 20(3):pages 153-190, September 1988.

B. Pernici and C. Rolland. Automatic tools for designing office information
systems (TODOS). Research report 813, ESPRIT, 1990.

M. Petre. Why looking isn’t always seeing. Readership skills and graphical
programming. Communications of the ACM, 38(6):pages 33-44, June 1995.
C. A. Petri. Kommunikation mit automaten (In German). Schriften des
Rheinisch- Westfalischen Institut fir Instrumentelle Mathematik an der Uni-
versitdt Bonn, (2), 1962.

K. Pohl. The three dimensions of requirements engineering. In Rolland et al.
[315], pages 275—292.

K. Pohl. The three dimensions of requirements engineering: A framework and
its applications. Information Systems, 19(3):243-258, April 1994.

362

307

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.
324.
325.
326.
327.
328.
329.

330.

References

. W. D. Potter and R. P. Trueblood. Traditional, semantic and hyper-semantic
approaches to data modeling. IEEE Computer, 21(6):53—63, June 1988.

R. Prieto-Diaz. Status report: Software reuseability. IEEE Software, pages
61-66, May 1993.

W. v. O. Quine. Set Theory and its Logic. Belknap, Cambridge, Massachusets,
1963.

M. R. Raabel. User interface specification language for PPP. Master’s thesis,
IDT, NTH, Trondheim, Norway, 1993.

B. Ramesh and M. Edwards. Supporting systems development by capturing
deliberations during requirements engineering. IEEE Transactions on Software
Engineering, 18(6):498-510, June 1992.

T. Reenskaug, P. Wold, and O. A. Lehne. Working with Objects. Man-
ning/Prentice Hall, 1995.

C. Rich and R. C. Waters. Automatic programming: Myths and prospects.
IEEE Computer, 22(7):40-51, August 1988.

H. Rittel. On the planning crisis: Systems analysis of the first and second
generations. Bedriftspkonomen, 34(8), 1972.

C. Rolland, F. Bodart, and C. Cauvet, editors. Proceedings of the 5th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’93),
Paris, France, June 8-11 1993. Springer Verlag.

C. Rolland and C. Proix. A natural language approach for requirements en-
gineering. In Loucopoulos [242], pages 257-277.

J. Rothenberg. Prototyping as Modeling: What is Being Modeled? In H. G.
Sol and K. M. van Hee, editors, Dynamic Modelling of Information Systems,
pages 335-359. Elsevier Science Publishers B. V. (North-Holland), 1991.

K. S. Rubin and A. Goldberg. Object behavior analysis. Communications of
the ACM, 35(9):48-62, September 1992.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ, 1991.

H. Rybinski. On first-order-logic database. ACM Transaction on Database
Systems, September 1987.

M. Saeki, H. Horai, and H. Enomoto. Software development process from
natural language specification. In Proceedings of the 11th International Con-
ference on Software Engineering (ICSE’89), pages 64-73. IEEE Computer So-
ciety Press, 1989.

D. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: Model-theoretic fundations. Technical report, Labo-
ratory for Foundation of Computer Science, Department of Computer Sceince,
The Univ. of Edinburgh, 1992.

Rett sats: Kartlegningskonferanser som utgangspunkt for bedriftsutvikling (In
Norwegian). Senter for bedre arbeidsliv, 1991.

A-W. Scheer and A. Hars. Extending data modelling to cover the whole
enterprise. Communications of the ACM, 35(9):166-171, September 1992.

D. Schuler and A. Namioka. Participatory design: Principles and Practices.
Lawrence Erlbaum, 1993.

A. Schutz. Collected Papers. Njihoff, 1962.

J. R. Searle. Speech Acts. Cambridge University Press, 1969.

J. R. Searle. Ezpression and Meaning. Cambridge University Press, 1979.

J. R. Searle and D. Vanderveken. Foundations of Illocutionary Logic. Cam-
bridge University Press, 1985.

A. H. Seltveit. An abstraction-based rule approach to large-scale information
systems development. In Rolland et al. [315], pages 328-351.

331

332.
333.

334.

335.

336.

337.

338.

339.

340.

341.
342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

References 363

. A. H. Seltveit. Complezity Reduction in Information Systems Modelling. PhD
thesis, IDT, NTH, Trondheim, Norway, 1994.

J. A. Senn. Analysis & Design of Information Systems. McGraw-Hill, 1989.
A. Sernadas, C. Sernadas, and H. D. Ehrich. Object-oriented specification of
databases: An algebraic approach. In Proceedings of the 13th VLDB, pages
107-116, 1987.

C. Sernadas, J. Fiadeiro, and A. Sernadas. Modular construction of logic
knowledge bases: An algebraic approach. Information Systems, 15(1):37-59,
1990.

C. Sernadas and J. Fiaderio. Towards object-oriented conceptual modeling.
Data € Knowledge Engineering, 6(6), 1991.

C. E. Shannon and W. Weaver. The Mathematical Theory of Communication.
University of Illinois Press, 1949.

S. Shlaer and S. J. Mellor. Object Lifecycles, Modeling the World in States.
Yourdon Press, 1991.

B. Shneiderman. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison Wesley, Reading, Massachusetts, 1992. 2nd
edition.

Y. Shoham. Agent oriented programming: An overview of the framework and
summary of recent research. In M. Masuch and L. Pélos, editors, Knowledge
Representation and Reasoning under Uncertainty: Logic at Work, pages 123~
129. Springer Verlag, 1994.

J. Siddiqi. Challenging universal truths of requirements engineering. IEEE
Software, pages 18-19, March 1994.

H. A. Simon. The organization of complex systems. In Pattee [299].

G. Sindre. Abstraction of behavior network models. Technical report, IDT,
NTH, Trondheim, Norway, 1987.

G. Sindre. RAPACITY - An approach to constructivity in conceptual mod-
elling. Master’s thesis, IDT, NTH, 1988.

G. Sindre. HICONS: A General Diagrammatic Framework for Hierarchical
Modelling. PhD thesis, IDT, NTH, Trondheim, Norway, 1990. NTH report
1990:44, IDT report 1990:31.

G. Sindre and J. Krogstie. Process heuristics to achieve requirements spec-
ification of feasible quality. In K. Pohl and P. Peters, editors, Second Inter-
national Workshop on Requirements Engineering: Foundations for Software
Quality (REFSQ’95), pages 92-103, Jyvaskyla, Finland, June 12-13 1995.

J. Slonim. OO in the real world - success or latest fashion? In Miiller and
Georges [266], pages 440—441.

R. Snodgrass. Monitoring in a software development environment - a relational
approach. In Proceedings of the Software Engineering Symposium on Practical
Software Development Environments, SIGPLAN, ACM SIGSOFT, 1984.

A. Sglvberg. A countribution to the definition of concepts for expressing users’
information systems requirements. In P. P. Chen, editor, Entity-Relationship
Approach to Systems Analysis and Design. North-Holland, 1980.

A. Sglvberg, J. Krogstie, and A. H. Seltveit, editors. Proceedings of the
IFIP8.1 WC on Information Systems Development for Decentralized Organi-
zations (ISDO’95), Trondheim, Norway, 21-23 August 1995. Chapman & Hall.
A. Sglvberg and C. H. Kung. Information Systems Engineering. Springer-
Verlag, 1993.

P. G. Sorenson, J.-P. Tremblay, and A. J. McAllister. The metaview system
for many specification environments. IEEE Software, 5(2):30-38, March 1988.
J. F. Sowa. Conceptual Structures: Information Processing in Mind and Ma-
chine. Addison Wesley, 1983.

364

353

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.
373.

References

. S. Spaccapietra and C. Parent. View integration: A step forward in solving
structural conflicts. IEEE Transactions on Knowledge and Data Engineering,
6(2):258-274, April 1994.

R. Stamper. Semantics. In R. J. Boland Jr and R. A. Hirschheim, editors,
Critical Issues in Information Systems Research, pages 43-78. John Wiley &
Sons, 1987.

L. Suchman. Plans and Situated Actions. Canbridge University Press, New
York, 1987.

A. G. Sutcliffe and N. A. M. Maiden. Bridging the requirements gap: Policies,
goals and domains. In Proceedings of the Seventh International Workshop on
Software Specification and Design (IWSSD-7), pages 52-55, Redondo Beach,
USA, December 6-7 1993.

E. B. Swanson and C. M. Beath. Maintaining Information Systems in Orga-
nizations. Wiley Series in Information Systems. John Wiley & Sons, 1989.
W. Swartout. GIST English generator. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI-82), pages 404-409, Pittsburgh, USA,
August 1982.

W. Swartout. The GIST behavior explainer. In Proceedings of The National
Conference on Artificial Intelligence, pages 402-407, 1983.

W. R. Swartout. XPLAIN: A system for creating and explaining expert con-
sulting programs. Artificial Intelligence, 21(3):285-325, March 1983.

K. D. Swenson, R. J. Maxwell, T. Matsymoto, B. Saghari, and I. Irwin. A
business process environment supporting collaborative planning. Journal of
Collaborative Computing, 1(1), 1994.

A. Taivalsaari. On the notion of inheritance. ACM Computing Surveys,
28(3):438-479, September 1996.

R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and
readability of diagrams. IEEE Transactions on Systems, Man, and Cybernetics,
18(1):61-79, January 1988.

Y. Tao and C. H. Kung. Formal Definition and Verification of Data Flow
Diagrams. The Journal of Systems and Software, 1991.

R. D. Tavendale. A technique for prototyping directly from a specification. In
Proceedings of the 8th international conference on software engineering, pages
224-229. IEEE Computer Society Press, 1985.

Tempora: Integrating database technology, rule-based systems and temporal
reasoning for effective software. Technical Report ESPRIT Project 2469, Tech-
nical Annex, Tempora Consortium, October 17 1988.

Tempora final review. Technical report, Tempora Consortium, 1994.

A. H. M. Ter Hofstede, H. A. Proper, and T. P. Van der Weide. Exploiting
fact verbalization in conceptual information modeling. Information Systems,
22(6/7):349-385, 1997.

I. Thomas and B. A. Nejmeh. Definitions of tool integration for environments.
IEEE Software, 9(2):29-35, March 1992.

K. Thoresen, V. Keul, J. Bing, A. Pape, and T. C. Paper. Omstilling med IT
(In Norwegian). NKS-forlaget, 1992.

C. Tomlinson and M. Scheevel. Concurrent programming. In W. Kim and
F. H. Lochovsky, editors, Object-oriented Concepts, Databases and Applica-
tions. Addison-Wesley, 1989.

D. C. Tsichritzis and F. H. Lochovsky. Data Models. Prentice-Hall, 1982.
W. Twining and D. Miers. How to do Things with Rules. Weidenfeld and
Nicholson, 1982.

374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

References 365

F. van Assche, P. Layzell, P. Loucopoulos, and G. Speltincx. Information
systems development: A rule-based approach. Knowledge Based Systems,
1(4):227-234, September 1988.

I. van Horebeek and J. Lewi. Are constructive formal specifications less ab-
stract? SIGPLAN Notices, 25(5):60-68, 1990.

V. E. van Reijswoud and N. B. J. van der Rijst. Modelling business commu-
nication as a foundation for business process redesign: A case of production
logistics. In Nunamaker and Sprague [278], pages 841-851.

V. van Swede and H. van Vliet. Consistent development: Results of a first em-
pirical study of the relation between project scenario and success. In G. Wijers,
S. Brinkkemper, and T. Wasserman, editors, Proceedings of the 6th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’9/),
pages 80-93, Utrecth, Netherlands, June 6-10 1994. Springer Verlag.

T. F. Verhoef and A. H. M. Hofstede. Feasibility of flexible information mod-
elling support. In Iivari et al. [179], pages 168-185.

T. F. Verhoef, A. H. M. Hofstede, and G. M. Wijers. Structuring modelling
knowledge for CASE shells. In Andersen et al. [8], pages 502-524.

R. Veryard and J. Dobson. Third order requirements engineering: Specifi-
cation, change, and identity. In K. Pohl and P. Peters, editors, REFSQ’95,
1995.

I. Vessey and S. A. Conger. Requirements specification: Learning object,
process, and data methodologies. Communications of the ACM, 37(5):102—
113, May 1994.

I. Vessey and R. Weber. Some factors affecting programming repair mainte-
nance. Communications of the ACM, 26(2):128-134, February 1983.

M. Vestli, I. Nordbg, and A. Sglvberg. Developing well-structured knowledge-
based systems. In Proceedings of the Sizth International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE’94), pages 366-373, Ju-
rmala, Latvia, June 21-23 1994.

M. Vestli, I. Nordbg, and A. Sglvberg. Modeling control in rule-based systems.
IEEE Software, pages 77-81, March 1994.

G. H. Von Wright. An FEssay in Deontic Logic and the General Theory of
Action. North-Holland, 1972.

R. Vonk. Prototyping — The effective use of CASE technology. Prentice Hall,
1990.

Y. Wand. An ontological foundation for information systems design theory.
In Proceedings IFIP, Linz, Austria, 1988.

Y. Wand and R. Weber. On the ontological expressiveness of information sys-
tems analysis and design grammars. Journal of Information Systems, 3(4):217—
237, 1993.)

B. Wangler, R. Wohed, and S-E. Ohlund. Business modelling and rule capture
in a CASE environment. In Proceedings of the Fourth Workshop on The Next
Generation of CASE Tools, Twente, The Netherlands, 1993.

P. T. Ward. The transformation schema: An extension of the data flow dia-
gram to represent control and timing. IEEE Transactions on Software Engi-
neering, 12(2):198-210, February 1986.

A. 1. Wasserman, P. A. Pircher, and D. T. Shewmake. Building reliable in-
teractive information systems. IEEE Transactions on Software Engineering,
12(1):147-156, January 1986.

H. Weigand. Conceptual models in PROLOG. In T.B. Steel Jr. and R. Meers-
man, editors, Database Semantics, pages 59—69. Elsevier Science Publishers
B.V., 1986.

366

393

394.

395.

396.

397.
398.

399.
400.
401.
402.
403.
404.

405.

406.

407.

408.

409.

410

References

. R. Wieringa. Three roles of conceptual models in information system de-
sign and use. In E. Falkenberg and P. Lindgren, editors, Information System
Concepts: An In-Depth Analysis, pages 31-51. North-Holland, 1989.

R. J. Wieringa. Algebraic Fundations for Dynamic Conceptual Models. PhD
thesis, May 1990.

R. J. Wieringa, J-J. C. Meyer, and H. Weigand. Specifying dynamic and
deontic integrity constraints. Data and Knowledge Engineering, 4:157-189,
1989.

G. Wilkie. Object-Oriented Software Engineering - The Professional Develop-
ers’s Guide. Addison-Wesley, 1993.

H. Willars. Handbok i ABC-metoden (In Swedish). Plandata Strategi, 1988.

G. Willumsen. Ezecutable Conceptual Models in Information Systems Engi-
neering. PhD thesis, IDT, NTH, Trondheim, Norway, November 1993.

R. J. Wilson. Introduction to Graph Theory. Longman, New York, 3 edition,
1985.

T. Winograd and F. Flores. Understanding Computers and Cognition.
Addison-Wesley, 1986.

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented
Software. Prentice-Hall, Englewood Cliffs, NJ, 1990.

M. Wirsing. Algebraic Specification, chapter 13, pages 677-780. Elsevier, 1990.
L. Wittgenstein. Philosophical Investigations. Blackwell, 1958.

M. Yang. COMIS - A Conceptual Model for Information Systems. PhD thesis,
IDT, NTH, Trondheim, Norway, 1993.

M. Yang and A. Sglvberg. The new PPP: Its architecture and repository
management. In Proceedings of the Fifth Workshop on The Next Generation
of CASE Tools, Utrecht, Holland, 1994.

E. S. K. Yu. An organization modelling framework for multi-perspective in-
formation systems design. Technical Report DKBS-TR-93-2, Department of
Computer Science, University of Toronto, Canada, 1993.

E. S. K. Yu and J. Mylopoulos. Using goals, rules, and methods to support
reasoning in business process reengineering. In Nunamaker and Sprague [277],
pages 234-243.

P. Zave. An operational approach to requirements specification for embedded
systems. IEEE Transactions on Software Engineering, 8(3):250-269, May 1982.
P. Zave. An insider’s evaluation of PAISLey. IEEE Transactions on Software
Engineering, 17(3):212-225, March 1991.
. L. Zusne. Visual Perception of Form. Academic Press, 1970.

Index

4GL 344

ABC 344
abstraction 336
acquaintances 337
act 337

actand 337

action 339

active system 340
activity 339

actor 337

— applicative 338
— atomic 337

— computational 337
— external 338

— hardware 337

— individual 337

— internal 338

— organizational 337
—— periodic 338
—— permanent 338
—— temporary 338
— social 337

—— individual 338
—— organizational 338
software 337

— supportive 338
— systemic 337

— technical 337

— temporal 337

AD 344

adaptive maintenance 343
agent 339

aggregation 336
ALBERT 344

AM 344

analytic rule 332
application system 341
— development 343

— maintenance 343
applicative actor 338

approach 342

ARIES 344

association 336

atomic computational actor 337
audience 342

behavior 339

BNF 344
BNM 344
CASE 344
CATWOE 344
CFG 344

CFP 344

CIM 344

CIP 345

CIS 340

class 331

classification 336

closure 341

CML 345
code-generation 343
COIS 341

COISIR 345
communication 335
compatibility

— executional 337

— hardware 337

— software 337

complete translation 343
computational actor 337
computerized information system 340
— organizational 341
computerized organizational informa-
tion system 341
conceptual model 1,336
conceptual modeling 342
constitutive rule 333
constructivity 340

COP 345

corrective maintenance 343

367

368 Index

CR 345
CRC 345
CSCW 345

DAIDA 345

data 335

data system 340
DBMS 345

delta 337

deontic rule 332
deontic state space 333
deontic transition 333
development 343

— functional 344
devtenance 344
DND 345

domain 331

DRL 345

DSM 345

duration 330
dynamic rule 333
dynamic system 341

ECML 345
EDFD 345
EIS 345
empirical rule 332
end-user 340
environment 331
ER 345

ERAE 345
ERL 345

ERT 345
ESPRIT 345
event 332

— external 333
— internal 333

executional compatibility 337

explicit knowledge 334
external actor 338
external event 333
externalization 341

F3 345

FG 345

filtering 342

FIS 345

formal role 339
formalism 336

— logical 336

FRISCO 345

FSM 345

functional development 344
functional maintenance 344

functional perfective maintenance

generalization 336
grapheme 335
GSM 345

hardware actor 337
hardware compatibility 337
HCI 345

history 332

HOQ 345

IBIS 345

ICASE 345

IDT 345

IFIP 9, 346

indirect user 340
individual social actor 337, 338
informal language 336
information 334
information system 340
— computerized 340
— organizational 340
internal actor 338
internal event 333
internalization 341
interval 330

IS 340

ISO 346

JAD 346
JSD 346

knowledge 333

— explicit 334

— shared explicit 334
— tacit 334

language 335

— informal 336

— natural 335

— professional 335

— semi-formal 336
language extension 335
language model 337
lawful state space 333
lawful transition 333
layout modification 342
local reality 341
logical formalism 336

maintenance 343
— adaptive 343
— corrective 343

343

— functional 344

— perfective 343

—— functional 343
—— non-functional 343
member 331
message 335

method 342
methodology 344
model 336
— conceptual 1,336

— filtering 342

— language 337

- layout modification 342
— system 337

— transformation 342

— translation 342

— validation 342

— verification 342

natural language 335

NATURE 346

NFR 346

non-functional perfective maintenance
343

NTH 346

OIS 340

OMT 346

ONER 346

00 346

OOA 346

OOD 346

OORASS 346

open system 340

organization 340
organizational closure 341
organizational information system
340

organizational reality 341
organizational social actor
organizational system 340

337, 338

paraphrasing 342

part 339

participant 339

partition 331

passive system 340

PD 346

perfective maintenance 343
periodic organizational actor 338
permanent organizational actor 338
phenomenon 330

PID 346

PLD 346

Index

portfolio 341

potential relevance 331
PPM 346

PPP 346

pragmatics 335
predecessor 337
process 339
professional language 335
property 331

prototype 343

RDD 346
reincarnation 338
relevance 331

— potential 331
rephrasing 342
replacement system 343
role 339

— formal 339
role conflict 339
RST 346

rule 332

— analytic 332

— constitutive 333
— deontic 332

— dynamic 333

— empirical 332

— necessity 332

— static 333

— temporal 333
rule of necessity 332

SA/RT 346

SAMPO 346

SASD 346

SCM 346

SD 346

SDL 346

semantics 335

— logical 336

— operational 336
semi-formal language 336
sentence 335

shared explicit knowledge 334
sign 335

social actor 337

software actor 337
software compatibility 337

SQL 346
SSADM 346
SSM 2,346

stable state 333
stakeholder 339

369

370 Index

state 332 — complete 343
— stable 333 — valid 343

— unstable 333 trigger 332
state space 332 type 331

— deontic 333

— lawful 333 UDD 346
statement 335 UID 346

— deletion 342 UIP 346

— insertion 342 unstable state 333
static rule 333 user 340

static system 341 —end 340
STD 346 — indirect 340
subclass 331

— cover 331 valid translation 343
— disjoint 331 validation 342
— partition 331 variants 337
subsystem 340 VDM 346
subsystem structure 340 verification 342
subtype 331 visualization 343
successor 337 vocabulary 335
supertype 331

supportive actor 338 word 335
symbol 335

syntax 335

system 339

— active 340

— application 341

— data 340

— dynamic 341

— information 340

— open 340

— organizational 340

— passive 340

— replacement 343

— static 341

system model 337

system viewer 339

systemic computational actor 337

tacit knowledge 334
technical actor 337
temporal actor 337
temporal rule 333
temporary organizational actor 338
time interval 330
time point 330
time scale 330
time unit 330
transformation 342
transition 332

— deontic 333

— lawful 333
translation 342

